1) на отрезке [0;3] функция y=x³-4 возрастает, поэтому наименьшее значение она принимает при x=0, и оно равно 0-4=-4, а наибольшее - при x=3, и оно равно 3³-4=23.
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2
(a₂+1) / (a₁+1) = (a₃+13) / (a₂+1) {Запись говорит о том что это геометрическая прогрессия q=q}
Дальше каждый член арифметической прогрессии расписываем:
a₂=a₁+d
a₃=a₁+2d
a₁+a₁+d+a₁+2d=24
3a₁+3d=24
3(a₁+d)=24
a₁+d=8 {Получили из первого уравнения}
(a₁+d+1) / (a₁+1) = (a₁+2d+13) / (a₁+d+1) {Получили из второго уравнения}
Решаем систему уравнений:
a₁=8-d
(8-d+d+1) / (8-d+1) = (8-d+2d+13) / (8-d+d+1)
9 / (9-d) =(21+d) / 9
(21+d)(9-d)=81
189+9d-21d-d²=81
-d²-12d+108=0
ответ: d₁ = -18; d₂ = 6
По условию арифметическая прогрессия возрастающая, следовательно d=6
Проверка:
Для арифметической:
a₁=2
a₂=8
a₃=14
∑=24
Для геометрической:
a₁=3
a₂=9
a₃=27
q=3