Simplifying
4x3 + -81x = 0
Reorder the terms:
-81x + 4x3 = 0
Solving
-81x + 4x3 = 0
Solving for variable 'x'.
Factor out the Greatest Common Factor (GCF), 'x'.
x(-81 + 4x2) = 0
Factor a difference between two squares.
x((9 + 2x)(-9 + 2x)) = 0
Subproblem 1
Set the factor 'x' equal to zero and attempt to solve:
Simplifying
x = 0
Solving
x = 0
Move all terms containing x to the left, all other terms to the right.
Simplifying
x = 0
Subproblem 2
Set the factor '(9 + 2x)' equal to zero and attempt to solve:
Simplifying
9 + 2x = 0
Solving
9 + 2x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-9' to each side of the equation.
9 + -9 + 2x = 0 + -9
Combine like terms: 9 + -9 = 0
0 + 2x = 0 + -9
2x = 0 + -9
Combine like terms: 0 + -9 = -9
2x = -9
Divide each side by '2'.
x = -4.5
Simplifying
x = -4.5
Subproblem 3
Set the factor '(-9 + 2x)' equal to zero and attempt to solve:
Simplifying
-9 + 2x = 0
Solving
-9 + 2x = 0
Move all terms containing x to the left, all other terms to the right.
Add '9' to each side of the equation.
-9 + 9 + 2x = 0 + 9
Combine like terms: -9 + 9 = 0
0 + 2x = 0 + 9
2x = 0 + 9
Combine like terms: 0 + 9 = 9
2x = 9
Divide each side by '2'.
x = 4.5
Simplifying
x = 4.5
Solution
x = {0, -4.5, 4.5}
1) При делении на 4 дают остаток 2
Последовательность можно записать в виде:
4n+2
Первые пять членов последовательности при n=1; 2; 3; 4; 5
6, 10, 14, 18, 22
2) При делении на 7 дают остаток 1
Последовательность можно записать в виде:
7n+1
Первые пять членов последовательности при n=1; 2; 3; 4; 5:
8, 15, 22, 29, 36
3) При делении на 5 дают остаток 3
Последовательность можно записать в виде:
5n+3
Первые пять членов последовательности при n=1; 2; 3; 4; 5:
8, 13, 18, 23, 28
4) При делении на 9 дают остаток 8
Последовательность можно записать в виде:
9n+8
Первые пять членов последовательности при n=1; 2; 3; 4; 5:
17, 26, 35, 44, 53
Так как НОД(a + 5, a) делит также и разность (a + 5) – a = 5, то он может равняться только 5 или 1. То же верно и для HOД(b, b + 5).
Заметим, что НОД(a, a + 5) = 5 тогда и только тогда, когда НОК(a, a + 5) делится на 5. Поэтому из равенства НОК(a, a + 5) = HOK(b, b + 5) следует равенство НОД(a, a + 5) = HOД(b, b + 5), а значит, и равенство a(a + 5) = b(b + 5) (как известно, НОК(m, n)·НОД(m, n) = mn. Теперь ясно, что a = b (если, например, a < b, то a + 5 < b + 5 и a(a + 5) < b(b + 5). Противоречие.)
Второй См. б).
б) Предположим, что такие числа существуют. Можно считать, что HOД(a, b, c) = 1 (в противном случае все числа можно сократить на общий делитель).
Обозначим m = HOK(a + c, b + c), d = HOД(a + c, b + c). Так как HOK(a + c, b + c) = НОК(a, b) ≤ ab < (a + c)(b + c), то d > 1. ab делится на m, а m, в свою очередь, делится на d, то есть ab делится на d. Поэтому либо a, либо b (пусть a) имеет общий делитель δ > 1 с числом d. Но тогда числа
c = (a + c) – a и b = (b + c) – c также делятся на δ. Мы получили противоречие с условием HOД(a, b, c) = 1.
ответ
б) Не могут.
Объяснение:
Потому что в (б) не могу