На первый взгляд задача очень простая. Зачастую решение таких задач сводят к нахождению объемов параллелепипедов и затем объём большего делят на объём меньшего ( как, кстати, и задач на количество плиток одной площади по поверхности большей площади). Переводим размеры в одинаковые единицы измерения Для кузова машины 32дм, 32 дм и 80 дм для коробок 4 дм, 8 дм и 10 дм V1:V2=(32•32•80):(4•8•10)=8•4•8=256 (коробок)
НО! Следует заметить, что объёмы могут делиться нацело, а полученное от деления количество коробок не поместится в кузове, т.к. их размеры могут не быть кратными. На рисунке приложения показан оптимальный вариант размещения коробок. По условию этой задачи коробки можно разместить в кузове без зазоров, они полностью займут его пространство, т.к. размеры коробки помещается по длине кузова 80:10=8 раз, по ширине 32:8=4 раза и по высоте 32:4=8 раз. Всего поместится 8•8•4=256 коробок. Если размещать их длиной по высоте кузова, получим три слоя коробок–32:10=3 (два дм высоты останутся незаполненными). Тогда поместится 20•4•3=240 коробок. Всегда следует высчитывать, сколько раз умещаются размеры меньшей фигуры в размерах большей.
2. Дискриминант. Если есть уравнение ax^2 + bx + c = 0, то дискриминант вычисляется по формуле D = b^2 - 4ac, и решение (если D>0) имеет вид x = (-b +- sqrt(D))/2a. a = 1, b = -4, c = -30. D = 16 + 120 = 136 = 4 * 34 x = (4 +- sqrt(4 * 34))/2 Можно вынести 4 из под знака корня и сократить на 2: x = (4 +- 2sqrt(34))/2 = 2 +- sqrt(34)
3. Дискриминант/4 Если уравнение имеет вид ax^2 + 2bx + c = 0, то можно вычислить D* = D/4 = b^2 - ac, решение будет выглядеть так: x = (-b +- sqrt(D*))/a D* = 4 + 30 = 34 x = (2 +- sqrt(34))/1 = 2 +- sqrt(34) Последний удобен, если старший коэффициент равен 1 или коэффициент при x чётный.
Зачастую решение таких задач сводят к нахождению объемов параллелепипедов и затем объём большего делят на объём меньшего ( как, кстати, и задач на количество плиток одной площади по поверхности большей площади).
Переводим размеры в одинаковые единицы измерения
Для кузова машины 32дм, 32 дм и 80 дм
для коробок 4 дм, 8 дм и 10 дм
V1:V2=(32•32•80):(4•8•10)=8•4•8=256 (коробок)
НО! Следует заметить, что объёмы могут делиться нацело, а полученное от деления количество коробок не поместится в кузове, т.к. их размеры могут не быть кратными.
На рисунке приложения показан оптимальный вариант размещения коробок.
По условию этой задачи коробки можно разместить в кузове без зазоров, они полностью займут его пространство, т.к. размеры коробки помещается по длине кузова 80:10=8 раз, по ширине 32:8=4 раза и по высоте 32:4=8 раз. Всего поместится 8•8•4=256 коробок.
Если размещать их длиной по высоте кузова, получим три слоя коробок–32:10=3 (два дм высоты останутся незаполненными). Тогда поместится 20•4•3=240 коробок.
Всегда следует высчитывать, сколько раз умещаются размеры меньшей фигуры в размерах большей.