По формуле общего члена геометрической прогрессии: Найти b₅₀/b₁₀=b₁·q⁴⁹/b₁·q⁹=q⁴⁰.
По условию: S₃₀ меньше (S₉₀-S₃₀) в 72 раза. Значит 72S₃₀=S₉₀-S₃₀ или 73S₃₀=S₉₀.
По формуле суммы n- первых членов геометрической прогрессии:
73b₁(q³⁰-1)=b₁(q⁹⁰-1); 73q³⁰-q⁹⁰=72
q³⁰=t q⁹⁰=(q³⁰)³=t³ Кубическое уравнение t³-73t+72=0 Легко заметить, что t=1 является корнем уравнения 1-73+72=0- верно. Это разложить левую часть на множители. t³-1-73t+73=0 (t-1)(t²+t+1)-73(t-1)=0 (t-1)(t²+t-72)=0 t₁=1 или t²+t-72=0 D=1+288=289 t₂=(-1-17)/2=-9 или t₂=(-1+17)/2=8 q³⁰=-9 - уравнение не имеет корней. q³⁰=8; (q¹⁰)³=2³. Значит q¹⁰=2 q⁴⁰=2⁴=16 О т в е т.b₅₀/b₁₀=q⁴⁰=16.
(х + 35) - скорость автомобилиста
2 ч 48 мин = 2,8 час
60 / х - 60 / (х + 35) = 2,8
60 * (х + 35) - 60 * х = 2,8 *(х + 35) * х
60х + 2100 - 60х = 2,8х^2 +98x
2.8x^2 +98x - 2100 = 0
x^2 + 35x - 750 = 0 Найдем дискриминант D Квадратного уравнения
D = 35^2 - 4 * 1 * (- 750) = 1225 + 3000 = 4225 ; sqrt 4225 = 65
Найдем корни уравнения : 1 - ый = (- 35 + 65) / 2 * 1 = 30/2 = 15
2 - ой = (- 35 - 65) / 2 = - 100 / 2 = - 50 . Скорость не может быть меньше 0 , поэтому подходит 1 - ый корень , Скорость велосипедиста равна 15 км/ч