Для того, чтобы выполнить упрощение выражений а) 2x - 3y - 11x + 8y; б) 5(2a + 1) - 3; в) 14x - (x - 1) + (2x + 6) мы с вами к каждому из заданных выражений применим алгоритм его упрощения.
Давайте вспомним алгоритм действий:
1. открытие скобок; 2. группировка и приведение подобных слагаемых.
В первом выражение нет скобок и мы переходим к приведению подобных сразу:
а) 2x - 3y - 11x + 8y = 2x - 11x + 8y - 3y = -9x + 5y;
б) 5(2a + 1) - 3 = 5 * 2a + 5 * 1 - 3 = 10a + 5 - 3 = 10a + 2;
в) 14x - (x - 1) + (2x + 6) = 14x - x + 1 + 2x + 6 = 14x - x + 2x + 1 + 6 = 15x + 7.
Объяснение:
.
Объяснение:
Пусть Х часов - время, которое необходимо первому рабочему для выполнения задания.
Тогда время выполнения вторым рабочим равно (Х + 4) часов.
2. Обозначим все задание за 1.
Тогда производительность первого рабочего 1/Х ед/час, второго - 1/(Х + 4) ед/час.
3. По условию задачи сначала первый рабочий работал 2 часа.
Тогда он выполнил 2 * 1/Х = 2/Х часть задания.
Затем второй рабочий работал 3 часа и выполнил 3 * 1/(Х + 4) = 3/(Х + 4) часть задания.
4. Вместе они сделали 1/2 часть работы.
2/Х + 3/(Х + 4) = 1/2.
4 * Х + 16 + 6 * Х = Х * (Х + 4).
Х * Х - 6 * Х - 16 = 0.
Дискриминант D = 6 * 6 + 4 * 16 = 100.
Х = (6 + 10) / 2 = 8 часов - время первого рабочего.
Х + 4 = 8 + 4 = 12 часов - второго.
ответ: За 8 часов может выполнить задание первый рабочий и за 12 часов - второй.
ответ: - 0,25 км/час ???
Объяснение:
Решение.
Пусть скорость течения реки равно х км/час. Тогда
скорость лодки по течению равна 5+х км/час.
а скорость лодки против течения равна 5-х км/час
За 3 часа лодка по течению проходит
S1=v1t1= 3*(5+x) = км;
За 3 часа 40 минут (3 2/3 часа) против течения проходит
S2=v2t2 = 3 2/3 * (5-x) = 11/3(5-x) км.
3*(5+х) = 11/3(5-х);
9(5-х)=11(5+х);
45-9х=55+11х;
-9х-11х=55-45;
-20х = 5;
х= - 0,25 км/час - скорость течения реки отрицательной быть не может...