ответ: нет решения
Объяснение: Размещением из n элементов по х называется любое упорядоченное подмножество из х элементов множества, состоящего из n различных элементов. Число размещений без повторений определяется по формуле
Aₙˣ= n!/(n-x)! Значит A²ₙ= n!/(n-2)!
Eсли комбинации из n элементов по x отличаются только составом элементов, то такие неупорядоченные комбинации называют сочетаниями из n элементов по x. Число сочетаний без повторений из n элементов по x определяется по формуле:
Cₙˣ= n!/ x!(n-x)! значит Сₙ²= n!/ 2!(n-2)!
Поэтому Сₙ² : Аₙ²= n!/ 2!(n-2)! : n!/(n-2)! = 1/2! = 1/2, т.к. 2!= 1·2=2
1/2 ≠ 32, значит уравнение не имеет решения
1) Імовірність випадення числа меншого від 5 = 4/6=2/3, бо числа 1 2 3 4 задовольняют умову, а всього на кубику 6 чисел.
Імовірність випадення числа більшого за 4 = 2/6=1/3, бо числа 5 6 задовольняють умову, а всього на кубику 6 чисел.
Для отримання результату помножимо ймовірність виконання умови при першому кидку на ймовірність виконання умови при другому кидку: 2/3*1/3=2/9
2)Імовірність виконнная умови 5/6 при першому кидку і 1/6 при другому. Отримуємо 1/6*5/6=5/36
3)Імовірність випадення на кубику при першому киданні числа більшого ніж при другому киданні дорівнює 1/2-1/6=1/3, оскільки 1/6-імовірність випадення дубля. Наприклад, перший раз випало число 1. Імовірність випадення того самого числа при другому киданні дорівнює 1/6 (6 варіантів 1 з яких нас задовольняє).1/2 ми вказуємо, бо при киданні використовується один і той самий кубик, і кількість випадків, які нас задовольняють удвічі менша за тотальну кількість імовірних подій, тобто імовірність симетрична.
Отже, відповідь: 1/3
арифметична прогресія: 4;2;0