Решение 1) Если натуральное число не делится на 3, то при делении на 3 оно даёт в остатке 1, или 2. Значит, его можно записать в виде: (3n – 1) или (3n – 2), где n - натуральное число. А) (3n – 1)² - 1 = 9n² – 6n + 1 – 1 = 9n² – 6n = 3*(3n² – 2n), а значит делится на 3 (один из множителей (т.е. 3) делится на 3. Б) (3n – 2)² – 1 = 9n² – 12n + 4 – 1 = 9n² – 12n + 3 = = 3*(n² – 4n + 1), а значит делится на 3 один из множителей (т.е. 3) делится на 3. Таким образом, разность между квадратом числа, которое не делится на 3, и единицей делится на 3 2) эти числа можно представить как 3x+1 и 3x+2, где х - любое натуральное число. Тогда надо проверить на делимость на 3 следующее выражение: (3х+2)² - (3х+1)² = 9x²+ 12x + 4 - 9x² - 6x - 1 = 6x + 3 = = 3*(2x + 1) - а это выражение делится на 3
V - знак квадратного корня V(5x+7) - V(x+4) =4x+3 ОДЗ: {5x+7>=0 {x+4>=0
{5x>= -7 {x>= -4
{x>=-7/5 {x>= -4
Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4 У нас получилась следующая ОДЗ: {x>= -7/5 {x>= -4 {x>= -3/4 Решением этой системы будет промежуток: [-3/4; + бесконечность) Итак, возводим в квадрат: (5x+7)^2 - (x+4)^2 = (4x+3)^2 25x^2+70x+49-x^2-8x-16=16x^2+24x+9 24x^2+62x+33= 16x^2+24x+9 24x^2+62x+33-16x^2-24x-9=0 8x^2+38x+24=0 |:2 4x^2+19x+12=0 D= 19^2-4*4*12=169 x1=(-19-13)/8=-4 - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.) x2=(-19+13)/8= -3/4 Получается, что уравнение имеет один корень => k=1 Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4 Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2 ответ:2
1) Если натуральное число не делится на 3, то при делении на 3
оно даёт в остатке 1, или 2. Значит, его можно записать в виде:
(3n – 1) или (3n – 2), где n - натуральное число.
А) (3n – 1)² - 1 = 9n² – 6n + 1 – 1 = 9n² – 6n = 3*(3n² – 2n),
а значит делится на 3 (один из множителей (т.е. 3) делится на 3.
Б) (3n – 2)² – 1 = 9n² – 12n + 4 – 1 = 9n² – 12n + 3 =
= 3*(n² – 4n + 1), а значит делится на 3 один из множителей (т.е. 3)
делится на 3. Таким образом, разность между квадратом числа,
которое не делится на 3, и единицей делится на 3
2) эти числа можно представить как 3x+1 и 3x+2,
где х - любое натуральное число.
Тогда надо проверить на делимость на 3 следующее выражение:
(3х+2)² - (3х+1)² = 9x²+ 12x + 4 - 9x² - 6x - 1 = 6x + 3
= = 3*(2x + 1) - а это выражение делится на 3