Алгоритм поиска. Ищем точки экстремума по условию y'=0. Определяем, является ли точка минимумом или максимумом по критерию изменения знака y' в данной точке: если знак y' изменяется с "+" на "-", то функция имеет максимум; если с "-" на "+" - минимум; если не изменяется - не является экстремумом. Наибольшее значение на отрезке определяется как максимальное значение среди всех максимумов функции на отрезке и значений функции на концах отрезка. Наименьшее значение функции определяется как минимальное значение среди всех минимумов на отрезке и значений функции на концах отрезка.
y'=3x²-6x=3x(x-2). Точки, подозрительные на экстремум: x=0; x=2. При x∈(0;2) y'<0 (функция y убывает (y↓)), при x∉(0;2) y'>0 (функция y возрастает (y↑)). y(0) = 0 y(2) = 2³-3*2² = 8-12 = -4
Слева от точки (0;0) функция y возрастающая, справа - убывающая. Значит, точка (0;0) является локальным максимумом. Слева от точки (2;-4) функция y убывающая, справа - возрастающая. Значит, точка (2;-4) является локальным минимумом.
Наибольшее значение функции y на отрезке [-1;3] равно max (y(-1),y(0),y(3)) = max (-4,0,0) = 0 (достигается в точках x=0 и x=3. Наименьшее значение функции y на отрезке [-1;3] равно min (y(-1),y(2),y(3)) = min (-4,-4,0) = -4 (достигается в точках x=-1 и x=2.
3sin²x-2(sin²x+cos²x)-sinxcosx=0
3sin²x-2sin²x-2cos²x-sinxcosx=0
sin²x-sinxcosx-2cos²x=0
(sin²x/cos²x) - (sinxcosx/cos²x) - (2cos²x/cos²x)=(0/cos²x)
tg²x - tgx -2=0
t=tgx
t² -t-2=0
D=(-1)² -4*(-2)=1+8=9
t₁=(1-3)/2= -1
t₂=(1+3)/2=2
При t=-1
tgx= -1
x= -п/4 + пк, к∈Z
На промежутке [-п; 3п/2]:
при к=0 х= -п/4;
при к=1 х= -п/4 + п = 3п/4.
При t=2
x=arctg2 + пк, к∈Z
На промежутке [-п; 3п/2] = [ -180°; 270°]:
arctg 2 ≈ 63°
при к= -1 х= arctg2 - п= 63° - 180°= - 117°
при к=0 х=arctg2
при к=1 х=arctg2 + п=63° + 180°=243°
ответ: а) -п/4 + пк, к∈Z;
arctg2 + пк, к∈Z.
б) arctg2 -п; - п/4; arctg2; 3п/4; arctg2 + п.