Пусть расстояние от в до с равно х км, тогда расстояние от а до в равно х-29 км, все растояние пройденное туристом равно х+х-29=2х-29 км. время, затраченное на путь ав равно (х-29): 3 час, на путь вс равно х: 4, все затраченное время равно \frac{x-29}{3}+\frac{x}{4}=\frac{4(x-29)+3x}{12}=\frac{4x-116+3x}{12}=\frac{7x-116}{12} час. по условию составляем уравнение: (2x-29): \frac{7x-116}{12}=\frac{35}{9}; \\ 12(2x-29)=\frac{35(7x-116)}{9}; \\ 9*12(2x-29)=35(7x-116); \\ 108(2x-29)=245x-4060; \\ 216x-3132=245x-4060; \\ 216x-245x=3132-4060; \\ -29x=-928; \\ 29x=928; \\ x=928: 29; \\ x=32 значит расстояние от в до с равно 32 км, расстояние ав равно 32-29=3 км от а до в турист шел 3: 3=1 час, от в до с 32: 4=8 ч
x/2 = (-1)^n arcSin(-1/2) + nπ, n ∈Z
x/2 = (-1)^(n+1) *π/6 + nπ, n ∈Z
x = (-1)^(n+1)*π/3 + 2nπ, n ∈Z
б) 2XosxCos4x - Cosx = 0
Cosx(2Cos4x -1) = 0
Cosx = 0 или 2Cos4x -1=0
x = π/2 + πk , k ∈Z Cos4x = 1/2
4x = +-arcCos1/2 + 2πn, n ∈Z
4x = +- π/3 + 2πn, n ∈Z
x = +-π/12 + πn/2 , n ∈Z
в) Sinx +√3Cosx = 0
Sinx = -√3Cos x |²
Sin²x = 3Cosx
1 - Cos²x = 3Cosx
Cos²x +3 Cosx -1 = 0
решаем как квадратное
D = 13
Cosx = (-3+√13)/2 нет решений.
Сosx = (-3 -√13)/2 нет решений