М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
АмелияРайс
АмелияРайс
10.08.2020 19:18 •  Алгебра

Решите неравенства №32.30​


Решите неравенства №32.30​

👇
Открыть все ответы
Ответ:
Сhubby
Сhubby
10.08.2020
А) да, например 512, 576, 648, 729
б) нет. Понятно, что знаменатель прогрессии - нецелое число. Пусть знаменатель прогрессии - число p/q (p, q - взаимно просты, p>q). Тогда члены прогрессии - числа вида
a, ap/q, ap^2/q^2, ap^3/q^3, ap^4/q^4.
Т.к. (p, q) = 1, то а делится на q^4, откуда q = 2, 3, 4 или 5 (иначе a не меньше 6^4 = 1296 > 740).
С другой стороны, a/q^4 - некоторое натуральное число, поэтому из того, что p^4 * a/q^4 < 740, следует, что p^4 < 740, т.е. p = 3, 4, 5.

Наименьшее значение знаменателя в таком случае 5/4. Но тогда пятый член прогрессии окажется не меньше, чем 510 * (5/4)^4 > 740. Противоречие.
4,5(80 оценок)
Ответ:
Abtun
Abtun
10.08.2020
Интересная задачка :) Обычно бывает два пешехода, а тут три...

Для начала переведём все скорости в метры за минуту - так удобнее.
6 км/ч = 100 м/мин
7,2 км/ч = 120 м/мин
Пешеходов обозначим (1), (2) и (3)
Теперь рассмотрим временную линию.
Момент "ноль" - все сидят на старте, пьют чай.
Момент "один" - через 30 минут м/мин * 30 мин = 3000 м, (2): 120 м/мин * 30 мин = 3600 м, (3): стартует.
Момент "два" - через какое-то время, обозначим его х минут, когда (3) догнал (1). К этому моменту м/мин *(30+х) мин = 100(30+х) м, (2): 120 м/мин * (30+х) мин = 120(30+х) м, (3): 100(30+х) м - столько же, сколько (1)
Момент "три" - через 40 мин после момента "два", когда (3) догнал (2). К этому моменту м/мин *(70+х) мин = 100(70+х) м, (2): 120 м/мин * (70+х) мин = 120(70+х) м, (3): 120(70+х) м - столько же, сколько (2)
Теперь запишем скорость (3) на участке "один"-"два". Он х) м за х минут, то есть его скорость равна
\frac{100(30+x)}{x}
На участке "два"-"три" х) м за (х+40) минут, то есть его скорость равна
\frac{120(70+x)}{x+40}
Поскольку скорость его постоянна, можем записать равенство:
\frac{100(30+x)}{x}=\frac{120(70+x)}{x+40}\\&#10;
Решаем уравнение:
100(30+x)(х+40)=120(70+x)х
100(30х+х²+1200+40х)=120(70х+x²)
7000х+100х²+120000=8400х+120x²
20x²+1400х-120000=0      (сокращаем на 20)
x²+70х-6000=0
Д=4900+24000=28900
х₁=(-70+170)/2=50
х₂=(-70-170)/2=-120 (не подходит, время не может быть отрицательным)
Значит, (3) догнал (1) через 50 минут. Подставим это значение и найдём скорость (3):
\frac{100(30+x)}{x}=\frac{100(30+50)}{50}=160
160 м/мин = 9,6 км/час
ответ: скорость третьего туриста 9,6 км/час
4,5(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ