М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ujwy
Ujwy
11.05.2020 05:18 •  Алгебра

решить ( желательно с решением)​


решить ( желательно с решением)​

👇
Открыть все ответы
Ответ:
annzhoravel461
annzhoravel461
11.05.2020
S против течения - 28 км.
S по течению - 16 км.
t - 3 часа
V течения - 1 км/ч

Составим уравнение.

Пусть Х - скорость в стоячей воде
Значит
Против теч. = х-1
По теч. = х +1

По формуле t = S : V
Состовляем время
Протб теч. = 28 / ( х -1 )
По течен. = 16 / ( х +1 )

Ну а теперь скомпануем.

16/( х+1) + 28 / (х-1) = 3 часа ( это всего времени)

Что бы решить надо найти О.З.
Это ( х-1) ( х+1)
У тройки нет знаменателя поэтому мы должны ему его добавить.
Перепеши тот же пример, и просто добавь 3 × ( х+1) × (х -1 ).

Теперь когда у всех есть О.З, мы можем раскрывать скобки и решать.

16х- 16 +28х +28 = 3х^2 - 3

Иксы в одну сторону, без в другую.
И получим.
3х^2 - 44 х - 15 =0
Д = 529 , из под корня равно 23
Х1 = 15 ( подх.)
х2 = - 1/3 ( неподх.)
4,8(74 оценок)
Ответ:
nononono3j
nononono3j
11.05.2020
Как я понял, b-6,5 - это основание логарифмов?
1) Область определения логарифма:
Основание логарифма > 0 и не равно 1
b - 6,5 > 0; b > 6,5
b - 6,5 =/= 1; b =/= 7,5
Число под логарифмом > 0:
x^2 + 1 > 0 - это верно при любом х
(b-5)*x > 0. Так как уже известно, что b > 5, то x > 0

2) Решаем уравнение. Основания логарифмов одинаковые, убираем их
x^2 + 1 = (b-5)*x
x^2 - (b-5)*x + 1 = 0
Так как уравнение должно иметь 2 различных корня, то D > 0
D = (b-5)^2 - 4*1*1 = b^2 - 10b + 25 - 4 = b^2 - 10b + 21 > 0
(b - 3)(b - 7) > 0
b < 3 U b > 7
Но из обл. опр. мы знаем, что
b > 6,5
b =/= 7,5
b принадлежит (7; 7,5) U (7,5; +oo)

3) Найдем x
x^2 - (b-5)*x + 1 = 0
x1 = (b - 5 - √(b^2 - 10b + 21) ) / 2
x2 = (b - 5 + √(b^2 - 10b + 21) ) / 2
Из обл. опр. мы выяснили, что х должен быть > 0.
Ясно, что x2 > x1, поэтому достаточно проверить
(b - 5 - √(b^2 - 10b + 21) ) / 2 > 0
b - 5 - √(b^2 - 10b + 21) > 0 
√(b^2 - 10b + 21) < b - 5
b^2 - 10b + 21 < b^2 - 10b + 25
Это верно при любом b, но проверить было необходимо.
ответ:  b принадлежит (7; 7,5) U (7,5; +oo)
4,4(64 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ