по условию пирамида правильная треугольная, => основание высоты пирамиды - центр описанной около треугольника окружности - точка пересечения высот правильного треугольника, которые точкой пересечения делятся в отношении 2:1 считая от вершины.
прямоугольный треугольник: гипотенуза с=5 см - длина бокового ребра правильной треугольной пирамиды катет а=3 см - высота правильной пирамиды катет b найти, по теореме Пифагора: 5²=3²+b². b=4 см
b- (1/3) высоты правильного треугольника, которая вычисляется по формуле: a=8/√3
Объяснение:
рис 2. по т пифагора ВД= √(20-х)²+12²) = √(400+144) =√544=4√34
Sтрап = 1/2*(АД+ВС)*ВМ
МД = (АД+ВС)/2 =20
ВМ = 12
Sтрап = 20*12 = 240
рис3. Sтрап = 1/2 * ( ВС + АД) * h
проведем из вершины В перпендикуляр к АД , полученный треугольник ВНА прямоугольный и равнобедренный, следовательно
BC =h = DN = HA АД = 2h
тогда формула будет выглядеть
Sтрап = 1/2 * 3h* h = 1.5 h^2 =1.5*13² = 253.5 если это 13
Sтрап 1,5*18² = 484 если это 18 на чертеже
картинка аналогичная но обозначения в решении твои, и поставь на рисунке свои данные