Влыжных гонках участвуют 11 спортсменов из россии, 6 спортсменов из норвегии и 3 спортсмена из швеции. порядок, в котором спортсмены стартуют, определяется жребием. найдите вероятность того, что первым будет стартовать спортсмен не из россии.
Данная зависимость является функцией, потому что это определенный закон, согласно которому каждому элементу одного множества ставится в соответствие элемент другого. В нашем случае Y зависит от значений X
Область определения х∈(-∞;+∞) , т.к. графиком этой функции будет парабола ветвями вверх. Область значений найдем определив вершину параболы. Абсцисса вершины равна -b/2a=-6/2=-3. Ордината вершины равна (-3)^2+6(-3)+12=9-18+12=3. Значит вершина находится в точке (-3;3) и т.к. парабола ветвями вверх значит область значений y∈[3;+∞).
ответ на последний вопрос в решении уравнения 3=x^2+6x+12; если решение есть, то ответ утвердительный. x^2+6x+9=0; D=36-4*9=0; x=-6/2=-3
Пусть п = масса песка (первоначальная) , б = масса (первоначальная) всего остального в смеси. Полная масса смеси = п+б (первоначальная) . Т. е. 1) п/(п+б) = 0,3; Добавили еще 12 кг - и стало песка 45%: 2) (п+12)/(п+б+12) = 0,45. Из этих двух уравнений находим первоначальную массу песка (она чуть позже понадобится) : 1) п = 0,3(п+б) -> 0,7п = 0,3б -> б = 7/3*п; 2) (п+12) =0,45(п+б+12); -> п + 12 = 0,45п + 0,45б + 5,4 -> 0,55п = 0,45б - 6,6 -> подставляем б из предыдущего уравнения -> 0,55п = 0,45*7/3*п - 6,6 -> 0,55п = 0,15*7*п - 6,6 -> 0,5п = 6,6 -> п = 13,2 кг. Теперь пусть x - масса песка, которую нужно добавить, чтобы его доля в общей массе смеси была 60%: (п+12+x)/(п+б+12+x) = 0,6; п + 12 + x = 0,6(п+б+12+x); раскрываем скобки: 0,4п + 4,8 + 0,4x = 0,6б; подставляем б из первого уравнения (б = 7/3*п) : 0,4п + 4,8 + 0,4x = 1,4п; 4,8 + 0,4x = п; отсюда x = (п - 4,8)/0,4; Подставляем п (мы его нашли чуть выше, п = 13,2): x = (13,2 - 4,8)/0,4 = 21
1)11+ 6+3 = 20 спортсменов всего учавствуют
2) 6/20 = 0,3 вероятность выступления спортсмена из России