Объяснение:
A1.
x²-8x+12=0
Д=8²-4*12=64-48=16
x1=(8-4)/2 = 2
x2=(8+4)/2 = 6
A2.
√60/√15 = √(15*4)/√15 = √15 * √4 /√15 = √4 = 2
A3.
-8-x<4x+2
-8-2<4x+x
-10<5x
-2<x
x€(-2;+°°)
A4
Площадь трапеции рассчитывается по формуле:
S= h* (a+b)/2
Нам известны основания a и b рваные 18+5=23 и 12 соответственно.
Нам неизвестна высота, но дан прямоугольный треугольник с острым углом в 45° => находим второй угол прямоугольного треугольника: 180-(90+45) = 45° => углы при основании равны, а значит это равнобедренный треугольник, и высота равна 5.
подставляем:
S= 5*(23+12)/2 = 5*35/2 = 87,5
Пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. Производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. Их общая производительность: 1/(х -18) + 1/х.
Работая вместе, они сделали всю работу (равную 1) за 12 часов
Уравнение:
(1/(х -18) + 1/х)·12 = 1
12·(х + х - 18) = х² - 18х
х² - 42х + 216 = 0
D = 42² - 4·216 = 900
√D = 30
х₁ = (42 - 30) : 2 = 6 (не подходит по условию задачи, даже работая вместе трубы наполняют бассейн за 12 часов!)
х₂ = (42 + 30) : 2 = 36
ответ: 2-я труба наполняет бассейн за 36 часов
ответ:Определим моменты времени, когда мяч находился на высоте ровно четыре метра. Для этого решим уравнение :
h(t)=-1,1+20t-10t^2
-1,1+20t-10t^2≥ 4
10t^2 - 20t + 4 + 1,1 ≤ 0
10t^2 - 20t + 5,1 ≤ 0
D = 20^2 - 4 *10*5.1 = 400 - 204 =196 =16
t1 = (20+16)/2*10 = 1,8
t2 = (20-16)/2*10 = 0,2
поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени (с) мяч находился на высоте 4 метра, двигаясь снизу вверх, а в момент времени (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее 4 метров 1,8 − 0,2 = 1,6 секунды.
Объяснение: