Пусть х пельменей в час - производительность Валентины, тогда (х + 2) пельменя в час - производительность Софьи. На лепку 112 пельменей Валентина затрачивает на 8 часов меньше, чем Софья на лепку 360 таких же пельменей. Уравнение:
(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410 25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410 169х²+90х+34≤ 203х²-165х+459 169х²-203х²+90х+165х+34-459 ≤ 0 -34х²+255х-425≤0 ( : -17) 2х²-15х+25≥0 D=225-200=25=(5)² x1=(15+5)/4=5 х2=5/2=2,5 2(х-5)(х-2,5)≥0 (:2) (х-5)(х-2,5)≥0 2,55 х + - + нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞ точки 2,5 и 5 тоже входят , так как неравенство не строгое тогда запишем : х∈(-∞;2,5]U[5;+∞)
Пусть х пельменей в час - производительность Валентины, тогда (х + 2) пельменя в час - производительность Софьи. На лепку 112 пельменей Валентина затрачивает на 8 часов меньше, чем Софья на лепку 360 таких же пельменей. Уравнение:
360/(х+2) - 112/х = 8
360 · х - 112 · (х + 2) = 8 · х · (х + 2)
360х - 112х - 224 = 8х² + 16х
8х² + 16х - 360х + 112х + 224 = 0
8х² - 232х + 224 = 0
Разделим обе части уравнения на 8
х² - 29х + 28 = 0
D = b² - 4ac = (-29)² - 4 · 1 · 28 = 841 - 112 = 729
√D = √729 = 27
х = (-b±√D)/(2a)
х₁ = (29-27)/(2·1) = 2/2 = 1 (не подходит по условию задачи)
х₂ = (29+27)/(2·1) = 56/2 = 28
ответ: 28 пельменей в час лепит Валентина.
Проверка:
112 : 28 = 4 ч - время работы Валентины
360 : (28+2) = 360 : 30 = 12 ч - время работы Софьи
12 ч - 4 ч = 8 ч - разница