В решении.
Объяснение:
Функцію задано формулою y = 1/4 * x. Знайдіть:
1) значення у, якщо x = 8; 2; -4; -3;
а) y = х/4; х = 8;
у = 8/4 = 2;
При х = 8 у = 2;
б) y = х/4; х = 2;
у = 2/4 = 0,5;
При х = 2 у = 0,5;
в) y = х/4; х = -4;
у = -4/4 = -1;
При х = -4 у = -1;
г) y = х/4; х = -3;
у = -3/4 = -0,75;
При х = -3 у = -0,75;
2) значення x,при якому y дорівнює -2; -1/4; 0; 16;
а) y = х/4; у = -2;
-2 = х/4
х = -2 * 4
х = -8;
у = -2 при х = -8;
б) y = х/4; у = -1/4;
-1/4 = х/4
х = -1/4 * 4
х = -1;
у = -1/4 при х = -1;
в) y = х/4; у = 0;
0 = х/4
х = 0 * 4
х = 0;
у = 0 при х = 0;
г) y = х/4; у = 16;
16 = х/4
х = 16 * 4
х = 64;
у = 16 при х = 64.
Пусть функция f(x) непрерывна и определена на заданном отрезке [a; b] и имеет на нем некоторое (конечное) количество критических точек. Первым делом найдем производную функции f'(x) по х.
2Приравниваем производную функции к нулю, чтобы определить критические точки функции. Не забываем определить точки, в которых производная не существует - они также являются критическими.
3Из множества найденных критических точек выбираем те, которые принадлежат отрезку [a; b]. Вычисляем значения функции f(x) в этих точках и на концах отрезка.
4Из множества найденных значений функции выбираем максимальное и минимальное значения. Это и есть искомые наибольшее и наименьшее значения функции на отрезке.