Х яблок у Володи ух яблок у Пети у²х яблок у Коли После раздачи стало: х+4 яблок у Володи ух-2 яблок у Пети у²х-2 яблок у Коли Эти числа и составляют арифметическую прогрессию: 1) если (ух-2) среднее число в арифметической прогрессии х+4+у²х-2=2(ух-2) (сумма наибольшего и наименьшего равна удвоенному среднему) у²х-2ух+х=-6 х(у²-2у+1)=-6, что невозможно 2) если (у²х-2) среднее число в арифметической прогрессии х+4+ух-2=2(у²х-2) 2у²х-ух-х=6 х(2у²-у-1)=6 2у²-у-1=6, но в этом случае нет целых корней 3) если (х+4) – среднее число в арифметической прогрессии ух-2+у²х-2=2(х+4) у²х+ух-2х=12 х(у²+у-2)=12 Т.к. у≥2, то у²+у-2≥4 (и является делителем числа 12) Пусть у=2, тогда х=3, а значит число яблок 3, 6 и 12 Либо у²+у-2=6 или у²+у-2=12, но в этом случае нет целых корней Следовательно у Володи 3 яблока, у Пети – 6 яблок, у Коли – 12 яблок. Всего 3+6+12=21 яблоко ответ: 21
2) x^2 + x + 1 = 0
3) 3x^2 + ax + 6 = 0
D = a^2 - 4*3*6 = a^2 - 72
Если у квадратного уравнения нет корней, то D < 0
a^2 - 72 < 0
a^2 < 72
-√72 < a < √72
-6√2 < a < 6√2
Целые а на этом промежутке: -8, -7, -6, ..., 6, 7, 8
4) j^17 + j^2005 = j^16*j + j^2004*j = 1*j + 1*j = 2j
5) (-j)^3 = (-j)^2*(-j) = -1(-j) = j
6) z = j; z^2 = j^2 = -1; z^2 + 361 = -1 + 361 = 360
7) z = -j; z^3 + 3z = (-j)^3 - 3j = j - 3j = -2j (см. п. 5))
8) z1 = 1 + j; z2 = 1 - j
z1 + z2 = 1 + j + 1 - j = 2
z1 - z2 = 1 + j - 1 + j = 2j