М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Druwba
Druwba
18.12.2021 08:09 •  Алгебра

Расстояние от пристапи А до пристапи В по течению реки катер проплыл за 6,5 ч, а от пристани В до пристани А
7,5 ч. Скорость течения реки 2 км/ч. Найдите собственную
скорость катера и расстояние между пристанями А и В.​

👇
Ответ:
medinceva24674qq
medinceva24674qq
18.12.2021

ответ:  28 км/час. 195 км.

Объяснение:

Решение.

Пусть собственная скорость катера равна х км/час.

Тогда скорость по течению равна х+2 км/час,

а скорость против течения равна х-2 км/час.

Расстояние  от А до В  (по течению)   равно

S1=vt = 6.5(x+2)  км ;

Расстояние от В до А (против течения) равно

S2=7,5(x-2) км.

Известно, что S1=S2:  

6.5(x+2) = 7.5(x-2);

6.5x+13=7.5x-15;

6.5x-7.5x = -15-13;

x=28 км/час  -  собственная скорость катера.

расстояние между пристанями равно

S= 6,5(28+2)=6,5*30= 195 км.  Или

S= 7,5(28-2)=7,5*26=195 км.  

4,4(45 оценок)
Открыть все ответы
Ответ:
tatyanamazur90
tatyanamazur90
18.12.2021
Найдите производную функции:

а) y' = (cos x – 2x^5)' = -sinx-10x ;   б) y' = (13x^2 + 1/2x^4)' = 26x+2x  в) y'  = ((8x^2 + x^5)(3x^3 – x^2))' = (8x^2+x^5)'*(3x^3-x^2) +(8x^2+x^5)(3x^3-x^2)' =   (16x+5x^4)(3x^3-x^2) +(8x^2+x^5)(9x^2-2x)    г) у'  = (х√х^4)' =(x^3)' = 3x^2.

2. Найдите тангенс угла наклона касательной, проведенной к графику функции у = 2х^2 в его точке с абсциссой х0 = –1.
Тангенс угла наклона равен производной в этой точке y' = (2x^2)' = 4x y(-1) = 4(-1) = -4

3. Найдите угловой коэффициент касательной, проведенной к графику функции у = 1/3х3 в его точке с абсциссой х = – 1. Угловой коэффициент касательной равен производной в этой точке y' = (1/3)x^3)' = x^2 y(-1) = (-1)^2 = 1
4. Функция f(x) возрастает на промежутках (– 5; –2) и (6;10) и убывает на промежутке (– 2;6). Укажите промежутки, на которых производная функции: f '(x) > 0; f '(x) < 0.  f '(x) > 0  на промежутках (-5;-2) и (6;10)  ; f '(x) < 0.   на промежутке (-2;6)

5. Найдите множество первообразных функции:

а) f(x) = 5х – cos x; F(x) = (5/2)*x^2 - sinx+C    б) f(x) = 4x^3 + 2x;  F(x) = x^4+x^2+C в) f(x) = –1/2x + 8. F(x) = (-1/4)*x^2+8x+C

6. Вычислите интеграл: а) б) в)

7. Вычислите площадь фигуры, ограниченной линиями: у = х2, у = 0,

х = 4. Sф = интегр(от x1 =0 до x2 = 4)(x^2dx) = (1/3)x^3I(от x1 =0 до x2 = 4) = (1/3)*4^3-0 =64/3 =21,333
4,5(55 оценок)
Ответ:
vovaste
vovaste
18.12.2021

Найдем производную функции f'(x)=-6x²+6x+36. Найдем критические точки функции.  f'(x)=0; -6x²+6x+36=0; x²-x-6=0 По теореме, обратной теореме Виета, корнями будут числа -2 и 3. Указанному отрезку принадлежат оба корня. Найдем значения функции f(x) =-2x³+3x²+36x-5 в критических точках и на концах отрезка и выберем из них наибольшее. f(-3)=-2*(-3)³+3*(-3)²+36*(-3)-5=54+27-108-5=-32

f(-2)=-2*(-2)³+3*(-2)²+36*(-2)-5=16+12-72-5=-49

f(3)=-2*(3)³+3*(3)²+36*(3)-5=-54+27+108-5=76-наибольшее

f(4)=-2*(4)³+3*(4)²+36*(4)-5=-128+48+144-5=59

4,6(49 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ