Сложение рациональных чисел обладает переместительным и сочетательным свойствами. Иными словами, если а , b и c — любые рациональные числа, то а + b = b + а , а + (b + с) = (а + b) + с .
Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю. Значит, для любого рационального числа имеем: а + 0 = а , а + (– а) = 0 .
Умножение рациональных чисел обладает переместительным и сочетательным свойствами. Если, а , b и c рациональные числа, то:
ab = ba , a(bc) = (ab)c . Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1 . Значит, для любого рационального числа а имеем:
а • 1 = а ;
Умножение числа на нуль дает в произведении нуль, т. е. для любого рационального числа а имеем:
а • 0 = 0 ; Произведение может быть равно нулю лишь в том случае, когда хотя бы один из множителей равен нулю:
если а • b = 0 , то либо а = 0 , либо b = 0 (может случиться, что и а = 0 , и b = 0 ) . Умножение рациональных чисел обладает и распределительным свойством относительно сложения. Другими словами, для любых рациональных чисел а , b и c имеем:
Имеем уравнение √((x+6)²+y²)+√((x-2)²+y²)=10. Перенесём направо один корень и возведём обе части в квадрат. √((x+6)²+y² ) = 10 - √((x-2)²+y²). (x+6)²+y² = 100 - 20√((x-2)²+y²) + (x-2)²+y². Раскроем скобки и приведём подобные. x²+12x+36+y² = 100 - 20√((x-2)²+y²) + x²-4x+4+y². 5√((x-2)²+y²) = -4x+17. Возведём в квадрат и приведём подобные. 25((x-2)²+y²) = 16x²-136x+289. 25(x²-4x+4+y²) = 16x²-136x+289. 25x²-100x+100+25y² = 16x²-136x+289. 9x²+36x+25y² = 189. 25y²+9x²+36x = 189. Получаем уравнение относительно у: у = +-√(-9x²-36x+189)/5. Это уравнение эллипса с центром в точке (-2; 0), с фокусами F1(–6;0) и F2(2;0), а = 10/2 = 5.
√18(√6-√2)-3√12=
=√(18*6)+√(18*2)-3√12=
=√108+√36-3√12=
=3√12+√36-3√12=
=√36
Сначала раскрываем Скобку (√18(√6-√2))
Здесь идет умножении под корнем
Записал полученное вырожение
√108=√(9*12)=3√12
слкрощаем 3√12 и -3√12
ответ √36