1) Замена (1/4)^x = y > 0 при любом х 4y^2 + 15y - 4 = 0 (y + 4)(4y - 1) = 0 y1 = -4 - не подходит y = 1/4 = (1/4)^x x = 1
2) 3^x = -x + 1 = 1 - x 3^x > 0 при любом х, поэтому 1 - x > 0; x < 1 При x = 0 будет 3^0 = 1 - 0 = 1 - подходит При x ∈ (0; 1) будет 3^x > 1; а 1 - x < 1 - корней нет При x < 0 будет 3^x < 1; 1 - x > 1 - корней нет x = 0
3) 3^x*9*3^(1/5) - ? Здесь нет ни уравнения, ни неравенства
4) 2^(4x) >= 16 2^(4x) >= 2^4 4x >= 4 x >= 1
5) (1/4)^(2x-5) > 1/8 (1/2)^(4x-10) > (1/2)^3 Функция y = (1/2)^x - убывающая, потому что 1/2 < 1. При переходе от степеней к показателям знак неравенства меняется. 4x - 10 < 3 x < 13/4
6) 5^(2x-3) - 2*5^(x-2) > 3 1/125*5^(2x) - 2/25*5^x - 3 > 0 Умножаем всё на 125 5^(2x) - 10*5^x - 375 > 0 Замена 5^x = y > 0 при любом x y^2 - 10y - 375 > 0 (y - 25)(y + 15) > 0 y = -15 < 0 - нет корней y = 25 = 5^x x = 2
А) Частная производная по х: zₓ'=((x+2y)*y²)ₓ'=(xy²+2y³)ₓ'=(xy²)ₓ'+(2y³)ₓ'=y²+0=y² Частная производная по у (при переписывании вместо а надо писать у, в предложенных индексах нет такой буквы, потому использую а: zₐ'=((x+2y)*y²)ₐ'=(xy²+2y³)ₐ'=(xy²)ₐ'+(2y³)ₐ'=2xy+6y²
а₈ = 0,4а₄
а₈ + а₄ = 2,8
S(n)=14,3 ; n=?
1. выражаем а₈ через а₄:
а₈ = 2,8 - а₄
2. приравниваем выражения и находим а₄:
0,4а₄ = 2,8 - а₄
1,4а₄ = 2,8
а₄ = 2
3. тогда а₈ = 2,8 - 2 = 0,8
4. составляем и решаем систему, выразив а₈ и а₄ через формулу арифметической прогрессии:
а₄ = а₁ + 3d
a₈ = a₁ + 7d
что в системе будет выглядеть как
а₁ + 3d = 2
a₁ + 7d = 0,8
решаем систему:
а₁ = 2 - 3d
2 - 3d + 7d = 0,8
4d = -1,2
d = -0,3
а₁ = 2,9
5. находим n по формуле суммы членов арифметической прогрессии:
14,3 = n(5,8 - 0,3(n-1)) / 2
n(5,8 - 0,3(n-1)) = 28,6
6,1n - 0,3n² = 28,6
0,3n² - 6,1n + 28,6 = 0 | x10
3n² - 61n + 286 = 0
D = 289
n = (61 ± 17) / 6 = 13; 10,1(6)
Так как целое n = 13, то 13 и будет нашим ответом.
ответ: n = 13.