М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
severina3
severina3
02.09.2021 15:40 •  Алгебра

На доске было записано уравнение x^2 + 10+ 20 = 0. К доске поочерёдно подходили школьники, стирали либо второй коэффициент, либо свободный член и заменяли его на число, отличающееся ровно на 1. В результате оказалось записано уравнение x^2 + 20 + 10 = 0. Докажите, что в какой-то момент на доске было записано уравнение с целыми корнями

👇
Открыть все ответы
Ответ:
misha666anibeat
misha666anibeat
02.09.2021
Пусть х-это скорость течения реки.Тогда скорость по течению реки будет (18+х),а против течения реки будет (18-х). Составим уравнение 50 км/(18+х) + 8км/(18-х) = 3 часа 50·(18-х) + 8·(18+х) - 3·(18+х)·(18-х) =0 (только х≠18 , чтобы знаменатель не был равен нулю) 900 -50х + 144 + 8х - ( 54+3х)·(18-х)=0 1044 -42х - (972-54х+54х-3х²)=0 1044 - 42х -972 +54х -54х +3х²=0 3х²-42х+72=0 разделим всё на 3,каждый член, для облегчения решения х²- 14х+ 24 =0 Д=196-4·1·24=100 х= 12 и х=2 Скорость реки не может быть почти равной скорости теплохода, поэтому х=12 мы не принимаем за ответ. ответ: х=2км/ч
4,5(26 оценок)
Ответ:
Olzhas2889
Olzhas2889
02.09.2021

Упростить выражение:

\left(\frac{6}{y^2-9}+\frac{1}{3-y}\right)\cdot \frac{y^2+6y+9}{5} = \\\\= \left(\frac{6}{(y-3)(y+3)}-\frac{1}{y-3}\right)\cdot \frac{(y+3)^2}{5} = \\\\= \frac{6-y-3}{(y-3)(y+3)} \cdot \frac{(y+3)^2}{5} = \\\\= -\frac{(y-3)(y+3)^2}{5(y-3)(y+3)} = \\\\=-\frac{y+3}{5}

Задача: Два автомобиля выезжают одновременно из одного города в другой, находящийся на расстоянии 560 км. Скорость первого на 10 км больше скорости второго, и поэтому первый автомобиль приезжает на место на 1 час раньше другого. Определить скорость каждого автомобиля.

Пусть скорость второго автомобиля — х км/ч, тогда скорость первого — х+10 км/ч. Второй был в пути \frac{560}{x} часов, а первый — \frac{560}{x+10} часов. Зная, что второй автомобиль был в дороге дольше на 1 час, составим и решим математическую модель:

    \frac{560}{x} - \frac{560}{x+10} = 1\\560(x+10)-560x=x(x+10)\\560x+5600-560x=x^2+10x\\x^2+10x-5600=0\\\frac{D}{4}=25+5600=5625=75^2 \\x=-5\pm \sqrt{75^2} = \\x_1 = -5+75=70\\x_2 = -5-75=-80 \:\: \Rightarrow \:\: x_2 \leq 0 \:\: \Rightarrow\:\: x_2 \in \varnothing

Скорость второго автомобиля — х = 70 км/ч, скорость первого — х+10 = 70+10 = 80 км/ч

скорость первого автомобиля — 80 км/ч;скорость второго автомобиля — 70 км/ч.

Задача: При каких значения x функция y=-\frac{x-8}{4}+1 принимает положительные значения.

-\frac{x-8}{4}+10 \:\: \big | \cdot (-4) \\-\frac{-4(x-8)}{4} +(-4)0\cdot(-4) \\x-8-4

x\in (-\infty; 12).

ответ: x < 12 или x ∈ (−∞; 12).

4,8(27 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ