Многочлен 4-ой степени первый коэффициент которого 2(!) и последний 2 (!) можно представить в виде многочленов второй степени так 2y⁴+y³+4y²-y+2=(y²+Ay+1)*(2y²+Cy+2) (1) или 2y⁴+y³+4y²-y+2=(y²+Ay+2)*(2y²+Cy+1) (2)
Раскрываем скобки: 2y⁴+y³+4y²-y+2=2y⁴+(2A+C)y³+(4+AC)y²+(2A+C)y+2 Два многочлена равны, если у них одинаковые степени и коэффициенты при одинаковых степенях переменной совпадают. 2A+C=1 4+AC=4 2A+C=-1 Первая и третья строка противоречат друг другу, значит разложение (1) невозможно
2y⁴+y³+4y²-y+2=(y²+Ay+2)*(2y²+Cy+1) (2)
Раскрываем скобки: 2y⁴+y³+4y²-y+2=2y⁴+(2A+C)y³+(4+AC+1)y²+(2С+А)y+2 Два многочлена равны, если у них одинаковые степени и коэффициенты при одинаковых степенях переменной совпадают. 2A+C=1 ⇒ C=1-2A 4+AC+1=4 2С+A=-1 ⇒C= (-1-A)/2
1-2A=(-1-A)/2 2-4A=-1-A 3=3A A=1 C=-1 О т в е т. 2y⁴+y³+4y²-y+2=(y²+y+2)*(2y²-y+1)
ответ скоріше так чим ні
Объяснение: