М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
varlamovanastya
varlamovanastya
20.02.2023 14:38 •  Алгебра

Представьте многочлен в виде квадрата двучлена 4a⁴+20a²+25​

👇
Ответ:
silina2018
silina2018
20.02.2023

(2a^2+5)^2 вот вродибы

4,8(81 оценок)
Ответ:
lizaivanovamail
lizaivanovamail
20.02.2023

ответ:   (2a²+5)².

Объяснение:

4a⁴+20a²+25​=(2a²)² + 2*2a²*5+5² = (2a²+5)².

4,4(23 оценок)
Открыть все ответы
Ответ:
nastykatymari
nastykatymari
20.02.2023
Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение:
24А = 15(А-3)
24А = 15А-45
А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120.
Следовательно, всего книг 120 * 2 = 240.
ответ: 240 книг.
4,7(34 оценок)
Ответ:
Egorjava
Egorjava
20.02.2023

Объяснение:

В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:

Утверждение $P(n)$ справедливо при $n=1$.

Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.

Доказательство с метода математической индукции проводится в два этапа:

База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)

Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.

Метод математической индукции применяется в разных типах задач:

Доказательство делимости и кратности

Доказательство равенств и тождеств

Задачи с последовательностями

Доказательство неравенств

Нахождение суммы и произведения

4,8(50 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ