ответ: 2)
1) -3 < a < -2 (по координатной прямой)
Вычтем единицу из каждой части двойного неравенства:
-3 - 1 < a - 1 < -2 -1
-4 < a - 1 < -3 --- верно.
2) b < 0 (по координатной прямой)
Домножим на (-1) обе части неравенства:
-1 * b > -1 * 0
-b > 0, то есть неравенство -b < 0 --- неверное
Проверим остальные:
3) a < 0
b < 0
Сложим два неравенства:
a + b < 0 --- верно
4) b < 0
a < 0; a² > 0 (по определению квадрата)
Тогда произведение положительного на отрицательное будет число отрицательное, то есть a²b < 0 --- верно
q = b(n)/b(n-1)
q = b2/b1 = 18/6 = 3
b(3) = q * b(2) = 3 * 18 = 54
b(4) = q * b(3) = 3 * 54 = 162