у = kx + b так как график проходит через начало координат, b = 0. подставим координаты точки М в уравнение 4 = k * (-2.5) Отсюда найдем k = 4/(-2.5) = -1.6 то есть искомая формула линейной функции у = -1,6х
Теперь, чтоб найти точку пересечения этого графика с прямой 3х-2у - 16 = 0, решим систему из 2 линейных уравнений у = -1,6х 3х-2у - 16 = 0 подставив у из первого уравнения во второе, получим 3х + 3,2х - 16 = 0 6,2х = 16 х = 16/6,2= 80/31 тогда у = -1,6 *80/31 = -128/31 То есть искомая точка пересечения (80/31; -128/31)
Задача решается через систему двух уравнений с двумя переменными. Пусть скорость третьего велосипедиста равна v км/ч, а t ч - время, за которое он догнал второго велосипедиста. До встречи третий и второй велосипедисты проехали одно и то же расстояние. По условию задачи, второй ехал на 1 час больше, чем третий. Тогда t+1 ч - время второго Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t v*t второй 21 t+1 21*(t+1)
Составляем первое уравнение: vt=21(t+1)
До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов, а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего. Получаем: Скорость (км/ч) Время (ч) Расстояние (км) третий v t+9 v*(t+9) второй 24 t+11 24*(t+11) Составляем второе уравнение: v(t+9)=24(t+11)
Решаем систему уравнений: { vt=21(t+1) => v=21(t+1)/t (подставим во второе уравнение) { v(t+9)=24(t+11)
Итак, t=3 часа Находим скорость третьего велосипедиста: (км/ч)
у = kx + b
так как график проходит через начало координат, b = 0.
подставим координаты точки М в уравнение
4 = k * (-2.5)
Отсюда найдем k = 4/(-2.5) = -1.6
то есть искомая формула линейной функции у = -1,6х
Теперь, чтоб найти точку пересечения этого графика с прямой 3х-2у - 16 = 0, решим систему из 2 линейных уравнений
у = -1,6х
3х-2у - 16 = 0
подставив у из первого уравнения во второе, получим
3х + 3,2х - 16 = 0
6,2х = 16
х = 16/6,2= 80/31
тогда у = -1,6 *80/31 = -128/31
То есть искомая точка пересечения (80/31; -128/31)