М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vladimirr1905
Vladimirr1905
13.05.2023 15:46 •  Алгебра

Найти критические точки и наименьшее значение функции у= - х/(х^2+81)

👇
Ответ:
sfinks98
sfinks98
13.05.2023

критические точки функции - это такие точки , что производная функции в этих точках равняется нулю.

берем производную  у '= (- х/(х^2+81)) '

y ' = -(81-x^2)/(x^2+81)^2

в точке x=9 и x=-9 производная равна нулю

проверяем на ОДЗ корни

ОДЗ от -бесконечности до + бесконечности 

значи и +9 и -9 критические точки

а минимальное значение функции будет при x=9

подставляем в изначальную функцию и получаем значение

y min = -1/18

4,4(93 оценок)
Открыть все ответы
Ответ:
Dimo558
Dimo558
13.05.2023

используя формулу a^n-b^n=(a-b)(a^(n-1)+a^(n-2)b+a^(n-3)b^2+...a^2b^(n-3)+ab^(n-2)+b^(n-1))

 

a^6-b^6=(a-b)(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5)

 

откуда

(x+1)^5 + (x+1)^4*(x-1) + (x+1)^3*(x-1)^2 + (x+1)^2*(x-1)^3 + (x+1)*(x-1)^4 + (x-1)^5=

=((x+1)^6-(x-1)^6)/((x+1)-(x-1))

 

по формуле разности квадратов и куба суммы(разности)

(x+1)^6-(x-1)^6=((x+1)^3-(x-1)^3)((x+1)^3+(x-1)^3)=

=(x^3+3x^2+3x+1-x^3+3x^2-3x+1)(x^3+3x^2+3x+1+x^3-3x^2+3x-1)=

=(6x^2+2)(2x^3+6x)=2(x^2+1)*2x(x^2+1)=4x*(x^2+1)^2

 

(x+1)-(x-1)=x+1-x+1=2

 

((x+1)^6-(x-1)^6)/((x+1)-(x-1))=4x*(x^2+1)^2/2=2x(x^2+1)^2

 

ответ: 2x(x^2+1)^2

 

 

4,8(69 оценок)
Ответ:
Шахлинка
Шахлинка
13.05.2023

x²-4≠0

x²≠4

x≠-2 ∧ x≠2

[tex]\\\left|\frac{x^2-5x+4}{x^2-4}\right|\leq1\\ \left|\frac{x^2-5x+4}{x^2-4}\right|\leq\frac{x^2-4}{x^2-4}\\\\ \frac{x^2-5x+4}{x^2-4}\leq\frac{x^2-4}{x^2-4}\\ \frac{x^2-5x+4}{x^2-4}-\frac{x^2-4}{x^2-4}\leq0\\ \frac{-5x+8}{x^2-4}\leq 0 |\cdot( x^2-4)^2\\ (-5x+8)(x^2-4)\leq0\\ -(5x-8)(x-2)(x+2)\leq 0\\

x_0=\frac{8}{5} \vee x_0=2 \vee x_0=-2\\ x\in(-2,\frac{8}{5})\cup(2,\infty)\\\\ \frac{x^2-5x+4}{x^2-4}\geq-\frac{x^2-4}{x^2-4}\\ \frac{x^2-5x+4}{x^2-4}+\frac{x^2-4}{x^2-4}\geq0\\ \frac{2x^2-5x}{x^2-4}\geq 0 |\cdot( x^2-4)^2\\ (2x^2-5x)(x^2-4)\geq0\\ x(2x-5)(x-2)(x+2)\geq 0\\ x_0=0 \vee x_0=\frac{5}{2}\vee x_0=2 \vee x_0=-2\\ x\in(-\infty,-2)\cup(0,2)\cup(\frac{5}{2},\infty)\\\\ x\in(((-2,\frac{8}{5})\cup(2,\infty))\cap((-\infty,-2)\cup(0,2)\cup(\frac{5}{2},\infty)))\backslash\{-2,2\}\\
\underline{x\in(0,\frac{8}{5})\cup(\frac{5}{2},\infty)}

4,5(56 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ