По определению, 
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение 
2) 

А значит, если взять
(*),
. И правда: 
(*) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4) 


А значит, если взять
(**),
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда 
4)

___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 
Будет сыграно С (2,18)*2=18*17/2*2=306 матчей.
В одном из предыдущих ответов не учтено, что в каждом матче участвуют ДВЕ команды, поэтому, если бы проводилось по одному матчу, то матчей было бы 18*17/2=153=(С (2,18), а поскольку они проводят по 2 матча - то в два раза больше. Элементарная задача на комбинаторику. А те ответы, где написано полная чушь.
Примечание: С (2,18) - так обозначается в комбинаторике число комбинаций при выборе двух элементов из 18 возможных. Оно равно 18!/(2!*(18-2)!)=18!/(2!*16!)=18*17/(2*1)=18*17/2=153
Объяснение: