Скорость течения реки (y м/с) в зависимости от глубины реки (х м) выражена формулой: у=-х^2+8х-12 найдите глубину реки с самым большим течением через дискриминант
если b : а = 1:2 ⇔ (a/b =2._,без дроби). =1 -ab/(a²+b²) = 1 -(a/b)/((a/b)² +1) =1 -2/(4+1) =1 -2/5 =3/5. или сразу =a²(1 -b/a+(b/a)²) / a²(1+(b/a)²) = (1 -b/a+(b/a)²) / (1+(b/a)² )= (1 -1/2+1/4)/(1+1/4) =(3/4)/(5/4) =3/5 =0,6. или =(a/b -1+b/a)/(a/b +b/a) =(2 -1+1/2)/(2+1/2) =(3/2)/(5/2) =3/5. (разделил одновременно числитель и знаменатель на a*b ).
Представить выражение в виде , где а, b и c - целые числа: =(2x² -2x +7x -7 +4)/(x-1) =(2x(x-1) +7(x-1) +4)/(x-1) =2x +7 +4/(x-1). a=2;b=7; c=4. или по другому : =(ax² -ax +bx-b +c)/(x-1) = (ax² +(b-a)x -(b -c))/(x-1). {a =2 , b-a=5 ; b-c =3⇔{a=2 ;b=a+5; c=b-3 ⇔{a=2; b=7; c=7 -3 =4. 2x +7 +4/(x-1).
Определите, при каких натуральных n значения данных выражений являются целыми числами: = (n² +2n +n+2 -4)/(n+2)= n+1 - 4/(n+2) ⇒n=2 (делители числа 4 : {± 1, ± 2, ± 4} , но здесь натуральные)
Пусть А- точка пересечения прямой а и плоскости α , если
прямая а лежит в плоскости β , то А также лежит в плоскости
β , а значит плоскости имеют общую точку , что противоречит
их параллельности , значит а не лежит в плоскости β ,
проведем через прямую а произвольную плоскость ω и пусть
ω ∩ α =b ; ω ∩ β = c ; A∈ a ⇒ А ∈ ω ; A ∈ α ⇒ A ∈ b ⇒ A = a ∩ b
, так как плоскость ω пересекает параллельные плоскости по
параллельным прямым , то b || c, прямые a ; b и с лежат в
одной плоскости и прямая а пересекает прямую b ⇒ a
пересекает также прямую с , пусть а ∩ с = В , В ∈ с ⇒ В ∈ β , В
∈ а и В ∈ β ⇒ В = а ∩ β , то есть прямая а и плоскость β имеют
общую точку и так как а не лежит в плоскости β , то она ее
пересекает ее в точке В