В рассматриваемом шестиразрядном числе abcdef, разряд “a” может принимать значения от 1 до 9 (9 значений), разряд “b” может принимать значения от 0 до 0 (1 значение), разряд “c” может принимать значения от 0 до 9 (10 значений), разряд “d” может принимать значения от 0 до 9 (10 значений), разряд “e” может принимать значения от 4 до 4 (1 значение), разряд “а” может принимать значения от 0 до 9 (10 значений).
Посчитаем всевозможное количество значений, которое может принимать число abcdef.
N=9*1*10*10*1*10=9000
Точно также посчитаем всевозможное количество значений, которое может принимать четырехзначное число wxyz, у которого разряд “w” может принимать значения 1 до 9 (9 значений), разряд “x” может принимать значения от 0 до 9 (10 значений), разряд “y” может принимать значения от 0 до 9 (10 значений), разряд “я” может принимать значения от 0 до 9 (10 значений).
M=9*10*10*10=9000
Как видим M=N. Число шестизначных чисел с двумя неизменяемыми разрядами равно числу четырехзначных чисел.
Уравнение:
(В+14)/(В+3)=(В+7)/В+37/88
Проблема в том, что оно не решается в целых числах.
Если домножить на 88*B*(B+3), то получится
88*B*(B+14) = 88(B+3)(B+7) + 37*B*(B+3)
88*B^2 + 88*14*B = 88(B^2 + 10B + 21) + 37*B^2 + 37*3*B
88*B^2 + 88*14*B = 88*B^2 + 88*10*B + 21*88 + 37*B^2 + 111*B
Вычитаем 88*B^2 слева и справа и умножаем числа
1232*B = 37*B^2 + 880*B + 111*B + 1848
37*B^2 - 241*B + 1848 = 0
А теперь находим дискриминант
D = 241^2 - 4*37*1848 = 58081 - 273504 = -215423 < 0
Решений нет.
Но даже если мы что-то напутали, и D = +215423, или
D = 58081 + 273504 = 331585
Все равно это не квадрат целого числа, и B иррационально.