А) Тут надо приравнять левую часть неравенства к нулю и решить как обычное квадратное уравнение, то бишь найти корни при дискриминанта: D= 49 - 4*(-9)*2 = 49+72 = 121 (т.е. 11^2) Находим сами корни: х1 = (7+11):4 = х2 = (7-11):4 = -1 Далее необходимо отметить эти точки на координатном луче (и они выколоты, потому что знак неравенства строго "меньше") Они делят этот луч на три промежутка, два крайних из которых имеют знак "+". А тот, что в середине, под знаком "-". Так как неравенство МЕНЬШЕ нуля, выбираем промежуток в середине, множество чисел которого и является решением. То есть ответ будет выглядеть так: х (знак принадлежности, в дальнейшем будем обозначать его @) (-1 ; 4,5) Едем дальше. Б) Ну тут вообще просто)) Корнем 49 является что? Правильно, "+ -7". Тут даже и решать-то нечего: х @ ( - %(бесконечность) ; -7)U(7 ; + %) В) Здесь алгоритм тот же, что и первом примере. Разве что на координатном луче надо выбрать крайние промежутки, потому как в неравенстве стоит знак "больше") То есть: х @ ( - % ; х1) U (х2 ; + %). На всякий случай: При условии, что уравнение имеет вид Удачи :)
Пусть это число А, так как оно оканчивается цифрами 17 и делится на 17 (17 делится на 17), то представив число А в виде A=100B+17, где B - некоторое неотрицательное целое число. Видим что A-17=100B+17-17=100B должно делится на 17, так как 100 на 17 не делится, то число В должно делится на 17. При данных условиях оно должно быть наименьшим, и сумма цифр должна ровнять 17-1-7=9
Так как сумма цифр числа В равна 9, то оно делится на 9(а так как оно делится еще на 17), НОК(9, 17)=9*17=153, значит число В равно 153, а данное число равно 15317
-ВСЕ ВО ВЛОЖЕНИЕ-
Объяснение: