Не понятно чему равна первая функция, поэтому напишу просто как решить. Если графики функций пересекаются значит у них обоих имеется одна и таже общая точка, т.е.координаты этой точки удовлетворяют обоим уравнениям. Теперь чтобы найти эту точку делаем следующее: из любого уравнения выражаем какую-либо неизвестную через другую, н-р, я выражу из второго уравнения х. 3x+5y=-12
3х=-12-5у
х=(-12-5у)/3
Затем в другое уравнение вместо х подставляем полученное выражение
2( (-12-5у)/3 )-3y = (тут уж я не знаю чему там у тебя равно) Преобразуем выражение и находим у
(-24-10у)/3 - 3у= (дальше я преобразовать не могу так не знаю числа стоящего после равно)
Нашли у ( должно получиться какое-нибудь число)
Полученное число нужно подставить в выделенное выражение и получим х. Данные два числа записываем как координаты точки (х,у)
См. объяснение и графики (в прикреплении)
Объяснение:
Чтобы найти координаты точки пересечения графиков двух функций, необходимо: 1) приравнять их; 2) из этого равенства найти х; 3) по найденному значению х найти у.
Задание В
1) приравняем х = 3х-4;
2) 2х = 4, х = 2;
3) если в первое уравнение подставить х = 2, то получим у = 2.
ответ: координаты точки пересечения х = 2, у = 2.
Построение графика.
1) Графики строим по точкам.
2) Для каждого графика необходимо 2 точки, т.к. это прямые линии.
3) Точки для графика у=х:
1) х = 0, у = 0; 2) х = 5; у = 5.
4) Точки для графика у=3х-4:
1) х = 0, у = - 4; 2) х = 3; у = 5.
ВНИМАНИЕ: оба графика должны пройти через точку пересечения.
Задание Г
) приравняем 3х + 2 = -0,5 х - 5;
2) 3,5 х = - 7, х = - 2;
3) если в первое уравнение подставить х = - 2, то получим у = -4.
ответ: координаты точки пересечения х = - 2, у = - 4.
Построение графика.
1) Графики строим по точкам.
2) Для каждого графика необходимо 2 точки, т.к. это прямые линии.
3) Точки для графика у=3х+2:
1) х = 0, у = 2; 2) х = 2; у = 8.
4) Точки для графика у=-0,5х-5:
1) х = 0, у = - 5; 2) х = 4; у = - 7.
Примечание: оба графика должны пройти через точку их пересечения.
Искомый многогранник можно получить, если вынуть из данной призмы два многогранника равного объема - A₁ABC и CA₁B₁C₁. Следовательно, его объем можно рассчитать как разность объемов призмы и двух равных олбъемов этих многогранников.
Объем всей призмы равен 8*9 = 72.
Объем многогранника a1abc равен объему многогранника CA₁B₁C₁, так как призма прямая с равносторонним треугольником в основании.
Этот объем составит 1/3 * 8*9 = 24.
Два таких объема будут равны 24*2 = 48.
Объем искомого многогранника A₁B₁BC равен 72-48=24