1) Для начала введу события, соответствующие попаданиям в мишень при 1, 2, 3.4, 5 выстрелах. Это события A1,A2,A3,A4,A5 соответственно.
2). Изветсно, что вероятность попадания в мишень при выстреле =0.8. У каждого из пяти событий существует два исхода - попадание и промах. Все исходы приму за 1. Тогда вероятность промаха при каждом выстреле равна 1 - 0.8 = 0.2.
3)Теперь введу новое событие - B, в которое входят события, при которых произошло попадание. По условию - это события A1,A2,A3. Два последних события не входят потому, что в них биатлонист промахнулся. Тогда
P(A1) = 0.8, P(A2) = 0.8, P(A3) = 0.8, P(A4) = 0.2, P(A5) = 0.2. Поскольку каждое событие не зависит одно от другого(каждое наступает в любом случае), то я применяю правило умножение вероятностей.
0.8 * 0.8 * 0.8 * 0.2 * 0.2 = 0.02048≈0.02. Задача решена )). Надеюсь, что я понятно решение изложил )
Пусть масса первого раствора х г, тогда в этом растворе х:100·4= 0,04х г соли. Масса второго раствора (х+3496) г, в этом растворе (х+3496):100·73=0,73(х+3496)
Масса нового раствора равна сумме масс первого и второго растворов, т.е. х+(х+3496)=2х+3496 Масса соли в нем 0,48(2х+3496) равна сумме масс соли первого и второго растворов 0,04х+0,73(х+3496). Уравнение: 0,48·(2х + 3496) = 0,04х+0,73·(х+3496); 0,96х + 1678,08 = 0,04х + 0,73х + 2552,08; 0,96х - 0,04х - 0, 73х = 2552,08 - 1678,08; 0,19х = 874; х = 4600. х+3496=4600+3496=8096 г
1) Для начала введу события, соответствующие попаданиям в мишень при 1, 2, 3.4, 5 выстрелах. Это события A1,A2,A3,A4,A5 соответственно.
2). Изветсно, что вероятность попадания в мишень при выстреле =0.8. У каждого из пяти событий существует два исхода - попадание и промах. Все исходы приму за 1. Тогда вероятность промаха при каждом выстреле равна 1 - 0.8 = 0.2.
3)Теперь введу новое событие - B, в которое входят события, при которых произошло попадание. По условию - это события A1,A2,A3. Два последних события не входят потому, что в них биатлонист промахнулся. Тогда
P(A1) = 0.8, P(A2) = 0.8, P(A3) = 0.8, P(A4) = 0.2, P(A5) = 0.2. Поскольку каждое событие не зависит одно от другого(каждое наступает в любом случае), то я применяю правило умножение вероятностей.
0.8 * 0.8 * 0.8 * 0.2 * 0.2 = 0.02048≈0.02. Задача решена )). Надеюсь, что я понятно решение изложил )