Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
1. BA=CD
A=C
BD-общая
Треугольник BCD= треугольнику BDA (по признаку равенства прямоугольных треугольников)(по катету и гипотенузе)
2. МТ=ТN
TKN=TKM(т.к. КТ-биссектриса)
Треугольник KTM=треугольнику TKN(по признаку равенства прямоугольных треугольников)(по катету и острому углу)
3. PK=KR
P=R
SKP=SKR
Т.к. углы при основании равны, то это равнобедренный треугольник.
Т.к. угол SKP=углу SKR, то KS-биссектриса
Т.к. это равнобедренный треугольник, то биссектриса в нем является и медианой, а следовательно, соединяет вершину с серединой PR, тогда PK=KR
(по второму признаку равенства треугольников)
4.REF=FES
EF-общая
Треугольник RFE=треугольнику FES(по признаку равенства прямоугольных треугольников)(по гипотенузе и острому углу)
7. RT=TS
Угол MTR=углу NTS
Т.к. угол R=углу S, то треугольник TRS равнобедренный, следовательно, RT=TS
Угол MTR=углу NTS, как вертикальные
Треугольник MTR=треугольнику NTS(по признаку равенства прямоугольных треугольников)(по гипотенузе и острому углу)
8. Абсолютно такой же треугольник, как и в предыдущем