а) 75 30 2
= 1 =1 во столько раз число не провереных работ больше
45 45 3
б) 45 9
= от числа непровер. работ составляют провереные
75 15
в) больше отношений составить нельзя
1. а)= а² - 6а - 3а - 18= а² - 9а - 18
б)= b³ + 3b² - 8b - 2b² - 6b + 16 =b³ + b² - 14b + 16
в)= 30х² + 20ху - 6ху + 4у² = 30х² + 14ху + 4у²
2. а)= (с+6) (d-5)
б)= b (x-y) + 4 (x-y) = (b+4) (x-y)
3. = c³ + 3c²d + cd² + 3d³ - 3c²d + cd²= c³ + 2cd² + 3d³
4. (y - 5) (y +7) = у(у+2) - 35
у² + 7у - 5у - 35 = у² + 2у - 35
у² + 2у -35 = у² + 2у - 35
0=0 ч.т.д
5. пусть длинна будет х см. тогда ширина у см.
составим систему
х - 6 = у
(х+5) (у +2) = 110 +ху
х - 6= у
(х+5) (х-6+2)=110+х(х-6)
х-6=у
х² - 4х + 5х - 20 = 110+х²-6х
х-6=у
х²-4х+5х-х²+6х = 110+20
х-6=у
7х=130
х=19
у=13
ответ: ширина 13 см. длинна 19 см
а) Если чисел выписано 7, то их было задумано 3. Их не могло быть меньше (у двух чисел сумм выписывается всего 3), и не могло быть больше (у четырёх чисел сумм будет 15). Нуля в наборе нет, а есть положительные и отрицательные числа. Какое-то встречается один раз, а какое-то два. Если отрицательное число одно, то положительных два, но тогда из них формируются три положительные суммы. Значит, было два отрицательных числа и одно положительное число, равное 7. Из отрицательных чисел может быть сформировано -5, чтобы в сумме с 7 получалось 2. Сумма же отрицательных чисел равна -13. Значит, это числа -8 и -5. А весь набор задуманных чисел был такой: -8, -5, 7. Легко видеть, что этот вариант подходит.
б) Пример с пятью числами: -2,-1,0,1,2. Легко проверяется, что выписано будет 31 число, где ±3 появляется 2 раза, ±2 -- 4 раза, ±1 -- 6 раз, и 0 появится ровно 7 раз. Четырёх различных чисел недостаточно. Это легко проверяется, так как 0 сам по себе встречается не более одного раза, среди пар он встречается не более двух раз (пары с одинаковой суммой не пересекаются), среди троек не более одного раза (все их суммы различны), и как сумма всех чисел тоже не более одного раза -- итого получается меньше семи.
в) Нет, не всегда. Пусть задуманы числа 1, 2, -3. Из них формируется набор чисел от -3 до 3 (без повторений). Ясно, что если у всех задуманных чисел сменить знак, то получится то же самое, поэтому задуманы могли быть и числа -1, -2, 3.