Пусть хx литров в минуту пропускает вторая труба. тогда первая труба пропускает x-4x−4 литров в минуту. зная, что вторая труба заполнит резервуар объемом 320 литров на 10 минут быстрее, чем первая труба заполнит резервуар объёмом 200 литров, составим уравнение: \frac{320}x+10=\frac{200}{x-4}x320+10=x−4200 \frac{320(x^2-4x)}x+10(x^2-4x)=\frac{200(x^2-4x)}{x-4}x320(x2−4x)+10(x2−4x)=x−4200(x2−4x) 320(x-4)+10(x^2-4x)=200x320(x−4)+10(x2−4x)=200x 320x-1280+10x^2-40x=200x320x−1280+10x2−40x=200x 320x-1280+10x^2-40x-200x=0320x−1280+10x2−40x−200x=0 10x^2+80x-1280=010x2+80x−1280=0 x^2+8x-128=0x2+8x−128=0 d_1=4^2+128=144=12^2d1=42+128=144=122 x_1=-4+12=8x1=−4+12=8 x_2=-4-12=-16x2=−4−12=−16 - не удовлетворяет условию значит первая труба пропускает 8 литров в минуту ответ: 8 литров в минуту
1) -3х+6у-12х-9у= -15x-3y
2) 6mn-2m-11mn-3n-5m=-5mn-7m-3n
1) (3a-7b)-(4a+8b)= 3a-7b-4a-8b=-a-15b
2)-(5m-7n)+(2n+12m)=-5m+7n+2n+12m=7m+9n
3) 3x(1-4x)-5x(6x+7) =3x-12x-30x-35x=-74x
4) 5c(2c+a)+(3c-2a)(5a-2c)=10c^2+5ca+15ca+6c^2-10a^2+4ca=16c^2+24ca-10a^2
5) (5y-3) куб. -(2-5y)куб=125y^3-225y^2+45y-27-8+150y - 60y^2+125y^3 =250y^3-285y^2+195y-32
1) 13(а-2)+10(4-а)=23
13a-26+40-10a=23
3a=9
a=3
2) (2х-1)(х+1)-х куб.=(х-3)куб -10
2x^2+2x-x-1-x^3=x^3-6x^2+27x-10
8x^2-28x-2x^3=-9
x(8x-28-2x^2)=-9
x1=0 (8x-28-2x^2)=-9
-2x^2+8x-19=0
D=8^2-4*(-2)-(-19)=-88(нет корней)
ответ:0
3) x/4 + x/8 =3/2
3x/8=3/2
3x=8*3/2
3x=12
x=4