Задание 1. По рисунку определите: а) Область определения функции; І I б) Нули функции; в) Промежутки, в которых функция принимает положительные и отрицательные значения; г) Промежутки возрастания (убывания) функции; д) область значений функции. -3+ Задание 2. Постройте график функции y= -х? + 6х + 5. Найдите значение х, при которых у = -5.
D(y)=R a<0 Ветки параболы в низ Нули функции -x^2+2x+8=0 D=36 корень из D=6 X1=(-2+6)/-2=-2 точка (-2;0) X2=(-2-6)/-2=4 точка(4;0) Координаты вершин параболы M=-b/2a=-2/-2=1 N=-D/4a=-36/-4=9 точка (1;9) Дальше просто отметь точки и дорисуй параболу f возрастает на промежутке( - бесконечность;1) бесконечность поставь символом :) f понижается на промежутке (1;+бесконечность) Нули (-2;0),(4;0) Функция отрицательна при ( - бесконечность;-2) U (4;+бесконечность)
Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
(1) нули функции
(2) прости не смогу