ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок
Чтобы не появилось ни одного герба надо, чтобы выпала решка (вероятность 0,5) и еще раз выпала решка у другой монеты (вероятность 0,5). Значит чтобы одновременно произошли два этих события надо 0,5*0,5=0,25.
Чтобы выпало 2 герба надо, чтобы выпал герб (вероятность 0,5) и еще раз выпал герб у другой монеты (вероятность 0,5). Значит чтобы одновременно произошли два этих события надо 0,5*0,5=0,25.
А вот, чтобы выпал сначала герб у первой монеты(вероятность 0,5), а потом решка у другой монеты (вероятность 0,5), тоже надо 0,5*0,5=0,25. Но ведь есть и другой случай: сначала решка у первой монеты (вероятность 0,5), а потом герб у второй монеты (вероятность 0,5), тоже будет 0,5*0,5=0,25. Кстати оба последних случа подходят под требование один раз выпал герб. то есть эти вероятности нам обе подходят, значит их надо сложить: 0,25+0,25=0,5.