Пусть х л воды в мин пропускает вторая труба, тогда (х-2) л/мин пропускная первой трубы. Так вторая труба свой объем заполняет быстрее на 4 мин быстрее, чем первая труба заполняет свой объём, то по времени и составляем уравнение по условию задачи: 136/(х-2) - 130/х = 4 приводим к общему знаменателю х(х-2) и отбрасываем его, заметив, что х≠0 и х≠2, получаем: 136х-130(х-2)=4х(х-2) 136х-130х+260-4х2+8х=0 -4х2 +14х +260 =0 |:(-2) 2х2 -7х -130 =0 Д=19+8*130=1089 х(1)=(7+33) / 4 =10 (л/мин) воды пропускает через себя вторая труба. х(2)= (7-33) / 4 = -6,5 <0 не подходит под условие задачи
1. Разделим обе части тригонометрического неравенства на √3 и освободимся от иррациональности в знаменателе:
√3tg(3x + π/6) < 1;
tg(3x + π/6) < 1/√3;
tg(3x + π/6) < √3/3.
2. Функция тангенс имеет период π, на промежутке (-π/2, π/2) возрастает, а значение √3/3 принимает в точке π/6:
3x + π/6 ∈ (-π/2 + πk, π/6 + πk), k ∈ Z;
3x ∈ (-π/2 - π/6 + πk, π/6 - π/6 + πk), k ∈ Z;
3x ∈ (-2π/3 + πk, πk), k ∈ Z;
x ∈ (-2π/9 + πk/3, πk/3), k ∈ Z.
ответ: (-2π/9 + πk/3, πk/3), k ∈ Z.
если не правильно, напишите в коменты(