15*(X+3)*(X-5) + 10*(X+2)*(X-5) +6*(X+2)*(X+3) \ 30*(X+2)*(X+3)*(X-5) = 2
15*(X^2-2X-15) +10*(X^2-3X-10) +6*(X^2+5X+6) = 60*(X+2)*(X+3)*(X-5)
15X^2 - 30X - 225 + 10X^2 - 30X - 100 +6X^2 +30X + 36 =
= 31X^2 - 30X - 289
60*(X+2)*(X+3)*(X-5) = 60*(X^2+5X+6)*(X-5) = 60*(X^3 - 19X -30) = 60X^3 - 1140X - 1800
31X^2 - 30X - 289 = 60X^3 - 1140X - 1800
60X^3 - 31X^2 - 1110X - 1511 = 0
Берём производную:
180X^2 - 62X - 1110X = 0
2*(90X^2 - 31X - 555) = 0
D = 961 - 4*90*(-555) = 961 + 199800=200761 V D = 448
X1 = 31 + 448 \ 180 = 2.6
X2 = 31 - 448 \ 180 = - 417\180 = - 2.3
В решении.
Объяснение:
Между какими соседними натуральными числами заключено число: 1)√27 ≈ 5,2
Между 5 и 6.
2)√135-2 ≈ 11,6-2 ≈ 9,6
Между 9 и 10.
3)√14 ≈ 3,7
Между 3 и 4.
4)√321 ≈ 17,9
Между 17 и 18.
Для памятки:
Натуральные - это те, с которых выражают целое количество предметов - два яблока, три апельсина. То есть натуральные числа это умное название для привычных всем чисел 1, 2, 3, 4 и так далее.
Если к натуральным добавить ноль и отрицательные, то это будет называться целые числа.
А если добавить и дроби - то это рациональные числа.
1/2(x+2)+1/3(x+3)+1/5(x-5)=2
1/2х+1+1/3х+1+1/5х-1=2
1/2х+1/3х+1/5х=2+1-1-1
х=30/31