1)Функция определена при тех х, при которых не обращается в 0 знаменатель. Решая уравнение arcsin(x²-3)=0, находим x²-3=0. Решая уравнение x²-3=0, находим x=+-√3. С другой стороны, должно выполняться неравенство -1≤x²-3≤1, или 2≤x²≤4, откуда √2≤x≤2. либо -2≤x≤-√2. Окончательно находим, что область определения состоит из четырёх интервалов: -2≤x<-√3, -√3<x≤-√2, √2≤x<√3,√3<x≤2 2. Так как числитель дроби есть 1, то в нуль функция не обращается. А так как знаменатель дроби принимает любые значения, то область значений функции есть два интервала: -∞<G(x)<0 и 0<G(x)<+∞ То есть функция принимает любые значения, кроме 0.
Дана квадратичная функция h(t)=30t−5t2, графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы. Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h). Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше. x0=t0=(−b)2a=−302⋅−5=3 секунды.
Время, через которое мяч упадет на землю, равно 2⋅t0=2⋅3=6 секунд. y0=h0= 30⋅3−5⋅32=45 метров.
1. Мяч взлетит на высоту 45 метров. 2. Мяч упадет на землю через 6 секунд