В решении.
Объяснение:
4. На сторонах прямоугольника построены квадраты Площадь одного квадрата на 56 см² больше площади другого. Найдите площадь прямоугольника, если известно, что длина прямоугольника на 4 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 4
у² - х² = 56
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
(х + 4)² - х² = 56
х² + 8х + 16 - х² = 56
8х = 56 - 16
8х = 40
х = 40/8
х = 5 (см) - ширина прямоугольника.
5 + 4 = 9 (см) - длина прямоугольника.
Проверка:
9² - 5² = 81 - 25 = 56 (см²), верно.
2) Найти площадь прямоугольника:
S = 9 * 5 = 45 (см²).
1) Относительная частота попаданий 32/40 = 4/5 = 0,8
2) Вероятность бракованной детали 75/500 = 3/20 = 0,15
3) Он соберет 200*0,85 = 170 кочанов капусты.
4) Опоздали 40 из 300, не опоздали 300-40 = 260 из 300
Вероятность, что ученик не опоздал как минимум 260/300 = 13/15.
Если были ученики, которые опаздывали не один раз, то вероятность, что случайный ученик не опоздал, ещё больше.
Например, если все 40 раз опоздал один ученик, то не опоздали остальные 299.
5) Не более 2 очков - это 1 или 2 очка. Это 33 + 57 = 90 раз.
Частота этого события 90/300 = 3/10 = 0,3.
6) Если даже взять два самых больших числа меньше 10, то есть 9 и 9, все равно сумма будет 18 < 20. Вероятность равна 0.
Отметьте лучшим решением и поставьте сердечко