М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Инав
Инав
14.08.2022 02:27 •  Алгебра

Найдите площадь фигуры,ограниченной осями координат,графиком функций f(x) = x^2-6x+9 и прямой x=2

👇
Ответ:
Brandy2005
Brandy2005
14.08.2022

Фигура ограничена осью OX и OY и прямой x = 2

OY = 0 по иксу, значит площадь фигуры будем искать на промежутке 0,2. Они же будут пределами интегрирования.

Нижний предел - 0, верхний - 2

Площадь фигуры находится по формуле

\int\limits^a_b {f(x)} \, dx

Теперь подставляем

\int\limits^2_0 {(x^2 - 6x + 9)} \, dx = \frac{x^3}{3} - \frac{6x^2}{2} + 9x = \frac{2^3}{3} - \frac{6 * 2^2}{2} + 9 * 2= \frac{8}{3} - \frac{24}{2} + 18 = \frac{16 - 72}{6} + 18 = -9\frac{1}{3} + 18 = 8\frac{2}{3} ед^2

4,8(75 оценок)
Открыть все ответы
Ответ:
Tytiki
Tytiki
14.08.2022
Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3

наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором
10- наименьшее двузначное число
10:4=2(ост 2)
11:4=2(ост 3)
11 - первый член прогрессии
(либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство
так как при делении на 4 остаток 3 общая форма 4k+3
4k+3>=10
4k>=10-3
4k>=7
4k>=7:4
k>=1.275
наименьшее натуральное k=2
при k=2: 4k+3=4*2+3=11
11 -первый член
)

далее
разность прогрессии равна числу на которое делим т.е. в данном случае 4

далее ищем последний член прогрессии
99- наибольшее двузначное
99:4=24(ост3)
значит 99 - последний член прогрессии
(либо с оценки неравенством
4l+3<=99
4l<=99-3
4l<=96
l<=96:4
l<=24
24 - Наибольшее натуральное удовлетворяющее неравенство
при l=24 : 4l+3=4*24+3=99
99- последний член прогрессии
)
далее определяем по формуле количество членов
n=\frac{a_n-a_1}{d}+1
n=\frac{99-11}{4}+1=23
и находим сумму по формуле
S_n=\frac{a_1+a_{23}}{2}*n
S_{23}=\frac{11+99}{2}*23=1265
ответ: 1265
4,6(11 оценок)
Ответ:

Рассмотрим вертикальные линии и горизонтальные. Каждую из них диагональ пересекает ровно один раз. При этом каждое пересечение вертикальной или горизонтальной линии соответствует пересечению двух (соседних) клеток. Посчитаем сумму вертикальных (v) и горизонтальных клеток (h): каждая клетка, которую пересекают (кроме двух крайних), считается дважды (она дважды участвует в паре), но также каждое пересечение считается дважды. Поэтому \frac{2(v+h)+2}{2}=v+h+1 есть количество пересеченных клеток (мы добавили двойку в числителе вот почему: 2(v+h) - это удвоенное количество средних клеток (т.е. не крайних), а крайние посчитаны только один раз. Добавляя 2, мы считаем и крайние два раза. Теперь все клетки посчитаны дважды — можем делить на 2)

Пусть дан прямоугольник a\times b, причем числа a,b не имеют общих делителей (иначе какая-то клетка пересекалась бы по вершине — мы ее не считали). Тогда v=a-1, h=b-1. Получаем a-1+b-1+1=a+b-1 пересеченная клетка. Поскольку числа 239 и 566 не имеют общих делителей, к ним применима эта формула. Получаем, что диагональ пересекает 239+566-1=804 клетки

4,4(54 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ