М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kjhfdklffsjsw
kjhfdklffsjsw
19.04.2022 03:15 •  Алгебра

Решите что на скрине умаляю


Решите что на скрине умаляю

👇
Открыть все ответы
Ответ:
g89546546354245
g89546546354245
19.04.2022

Первое задание смотрите в комментарии.                                                    Не хочу нагромождать решение.

Необходимо найти следующую сумму:

S= 1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+(n-1)^2/(2(n-1) -1)(2(n-1) + 1) + n^2/(2n-1)(2n+1)

Преобразуем выражение:

k^2/(2k-1)(2k+1) = 1/8 * ( 2k/(2k-1) + 2k/(2k+1) ) = 1/8 * ( 1 + 1/(2k-1) + 1 - 1/(2k+1) ) = 1/4 + 1/8( 1/(2k-1) - 1/(2k+1) )

Как видим, данную сумму можно представить так:

S = n/4 + 1/8 * (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/(2n-3) - 1/(2n-1) + 1/(2n-1) --1/(2n+1) )

Как видим, все в скобках уничтожится, помимо:   1 - 1/(2n+1)

Откуда сумма ряда:

S = n/4 + 1/8 * (  1 - 1/(2n+1) ) = n/4 + 1/8 * (2n/(2n+1) ) = n/4 * ( 1 + 1/(2n+1) ) =

= n/4 * ( (2n+2)/(2n+1) = n(n+1)/( 2(2n+1) )

1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+(n-1)^2/(2(n-1) -1)(2(n-1) + 1) + n^2/(2n-1)(2n+1) =

=  n(n+1)/( 2(2n+1) )

Докажем теперь это методом математической индукции:

Проверим тождество для n = 1

1^2/1*3 = 1*2/( 2* 3)

1/3 = 1/3 - верно.

Предположим, что тождество справедливо при n = t:

1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) =  t(t+1)/( 2(2t+1) )

Докажем его справедливость для n = t + 1, то есть необходимо доказать, что:

1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) =      (t+1)(t+2)/( 2(2(t+1)+1) ) = (t+1)(t+2)/(2*(2t+3) )

Доказываем:

1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) =

= t(t+1)/( 2(2t+1) ) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) =

= t(t+1)/( 2(2t+1) ) + (t+1)^2/(2t+1)(2t+3) = 1/2 * (t+1)/(2t+1) * ( t+ (2t+2)/(2t+3) ) =

=1/2 * (t+1)/(2t+1) * ( t + 1 - 1/(2t+3) ) = 1/2 * (t+1)/(2t+1) * ( 2t^2+3t +2t + 3 -1)/(2t+3) = (t+1)(2t^2+5t+2)/(2*(2t+1)(2t+3) ) = (t+1)(t+2)(2t+1)/(2*(2t+1)(2t+3) ) =

= (t+1)(t+2)/(2*(2t+3) ) - верно.

Таким образом, из принципа математической индукции данное тождество доказано.

4,4(28 оценок)
Ответ:
marinet2017
marinet2017
19.04.2022

одним из моих любимых произведений яв-ся повесть а.п. чехова "палата №6". помню, я читал её ночью, меня клонило в сон в силу позднего времени, но вскоре это чувство исчезло и я с огромным интересом погрузился в другой мир. в последствии я не о том, что пожертвовал сном ради чтения этой повести. 

в ней затрагиваются важные филосовские вопросы о справедливости жизни и отношении к страданиям. смысл произведения передается через два образа : врача рагина и душевнобольного громова. на первый взгляд, их мало что объединяет, но вскоре проявляется их схожесть: они оба люди начитанные, мыслящие, . но это единственная их общая их черта (не учитывая финал), ведь в рассуждениях своих они имеют противоположные мнения: один отвегает страдания и не ставит их не во что (поскольку он их не переживал), второй же остро реагирует на них и считает это нормальным поведением (он уже обжегся в жизни). мне понравилось то, что читатель имеет возможность перейти на сторону одного из них, согласиться с той или иной точкой поры, до времени.

  и когда оба персонажа окажутся в равных условиях,  мы сможем убедиться в правоте лишь одного из главных героев. это осознание приходит само, невавязчиво, но немного болезненно. автор мягко поддталкивает нас к принятию правильного решения и как бы открывает глаза на мир.

я советую всем прочитать эту замечательную повесть.

 

4,6(40 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ