Объяснение:
х длина
(80/2)-х=40-x ширина
S=x(40-x)=-x²+40x это квадратичная функция
коэффициент при х² равен -1 и -1<0 значит ветки направлены вниз и в вершине максимум
абсцисса вершины
х₀=-b/2a=40/2=20
х=х₀=20 см длина
40-20-20 см ширина
при длине и ширине равных 20 см плошадь прямоугольника будет наибольшей
Введем подстановку t = cos (3x), где |t| меньше или равен 1, т.к. функция cosx является ограниченной снизу -1, сверху +1.
Тогда исходное уравнение перепишется следующим образом:
2t^2 - 5t - 3 = 0.
Сейчас перед нами обыкновенное квадратное уравнение. Находим дискриминант и корни, если они будут.
D = b^2 - 4ac,
D = 25 + 24 = 49,
D>0 и значит уравнение имеет два корня.
t1 = (-b - корень из D) / (2a),
t1 = (5 - 7) / 4 = -1/2;
t2 = (-b + корень из D) / (2a),
t1 = (5 + 7) / 4 = 3;
Вернемся к подстановке t = cos (3x):
1) cos (3x) = -1/2,
3x = ± (2pi) / 3 + 2pi*k, где k - целое число;
x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
2) cos (3x) ≠ 3, т.к. |t| ≤ 1.
ответ: x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
Объяснение:
Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba. Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней: ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней. ▸ Теорема Виета для квадратного уравнения: Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение: ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2). ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2. ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен. ▸ Полезные формулы сокращенного умножения: x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией
Пусть Х-длина прямоугольника, У-ширина.
Тогда периметр
2*(Х + У) = 80
У = 40 - Х
Площадь прямоугольника
S = Х*У = Х*(40 - Х) = 40*Х - Х^2
Добавим 400 и вычтем 400:
S = 400 - 400 + 40*Х - Х^2 = 400 - (400 - 40*Х + Х^2) =
= 400 - (Х - 20)^2
Выражение (Х - 20)^2 >= 0,
если (Х - 20)^2 > 0, то S < 400,
если (Х - 20)^2 = 0, то S = 400
Максимальное значение достигатся при (Х - 20)^2 = 0,
то есть при Х=20.
Значит У = 40 - Х = 20.
ответ: максимальное значение площади достигается, когда длина
прямоугольника равна ширине и равна 20 см, то есть прямоугольник - квадрат со стороной 20 см.
Объяснение: