Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410
169х²+90х+34≤ 203х²-165х+459
169х²-203х²+90х+165х+34-459 ≤ 0
-34х²+255х-425≤0 ( : -17)
2х²-15х+25≥0
D=225-200=25=(5)²
x1=(15+5)/4=5
х2=5/2=2,5
2(х-5)(х-2,5)≥0 (:2)
(х-5)(х-2,5)≥0
2,55 х
+ - +
нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞
точки 2,5 и 5 тоже входят , так как неравенство не строгое
тогда запишем : х∈(-∞;2,5]U[5;+∞)