Объяснение:
1) 3а^2+(а-5)=3а^2+а-5
2)5-(4а+5)=5-4а-5= - 4а
Дано:
Найти - остаток от деления
Решение.
1) Для начала разложим многочлен на множители, для этого решим уравнение:
2) Так как данный многочлен делится на
с остатком, то представим его в виде
где
- неполное частное;
- искомый остаток.
Степень остатка деления многочлена на многочлен должна быть меньше степени делителя. В данном случае делитель - многочлен второй степени, так что остаток - многочлен первой степени, который имеет вид:
3) Подставим в равенство первый корень
и получим:
Вычислим .
Так как , то
=>
4) Аналогично решаем и со вторым корнем .
5) Подставим в полученное уравнение:
6)
- искомый остаток.
ответ:
- корень нечетной степени
- для корней четной степени появляется модуль
Неравенства сводятся к таким: и
По определению модуля:
Таким образом, первое неравенство выполняется всегда. Для положительных чисел и нуля модуль равен самому числу. Для отрицательных чисел, само число меньше модуля, так как модуль будет положительным числом.
Второе неравенство выполняется при неотрицательных . Для положительных чисел и нуля модуль по-прежнему равен самому числу. Однако, отрицательное число не может быть больше или равно модуля, так как модуль отрицательного числа - положителен.
1)3a^2+a-5
2) 5-4a-5=-4a
a^2 -а в квадрате