М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
belbeksev
belbeksev
20.10.2021 09:30 •  Алгебра

Представьте данные в виде вариационнаго ряда и определите его моду медиану размах и среднее арифметическое :16,15,12,17,11,1315,12,14,13,16,17,15 ​

👇
Ответ:
Аня24204
Аня24204
20.10.2021

Объяснение:

16; 15; 12; 17; 11; 13; 15; 12; 14; 13; 16; 17; 15.

Упорядочим ряд:

11; 12; 12; 13; 13; 14; 15; 15; 15; 16; 16; 17; 17.

Мода: 15.

Медиана: 15.

Размах: 17-11=6.

Ср. арифметическое: \frac{11+12+12+13+13+14+15+15+15+16+16+17+17}{13}=\frac{186}{13}\approx14,3.

4,5(16 оценок)
Открыть все ответы
Ответ:
BooWim
BooWim
20.10.2021

34

Объяснение:

пусть первое число 2n

а второе 2n+2

2n(2n+2)≤300

4n²+4n-300≤0 разделим на 4

n²+n-75≤0

решим методом интервалов

n²+n-75=0

Найдем дискриминант квадратного уравнения:

D = b² - 4ac = 1 - 4·1·(-75) = 1 + 300 = 301

Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:

x₁=   (-1 - √301)/ 2  ≈ -9.1747

x₂ =  ( -1 + √301)/ 2  ≈ 8.1747

по свойству квадратичной функции т.к. старший коэффициент квадратного уравнения равен 1 и 1>0 ветки направлены вверх

тогда решением неравенства будет область между корнями

(x₁)(x₂)>

   +                             -                      +

n²+n-75≤0 при х∈[x₁;x₂]

так как нам требуется максимально возможная сумму последовательных четных чисел то выбираем наибольшее положительное четное число из интервала [x₁;x₂] что приближенно равно [-9.1 ;8,1]

это число n=8

тогда 2n=2*8=16 первое число

2n+2=16+2=18  второе число

16*18=288≤300  

16+18=34  это максимально возможная сумма последовательных четных чисел, произведение которых не превышает 300

4,6(22 оценок)
Ответ:
AlisaSerikh
AlisaSerikh
20.10.2021
При каких a неравенство  (2a-3)cosx -5 >0 не имеет решения.а) { 2a -3 < 0 ;cosx < 5/(2a-3).⇔{ a < 1,5 ;cosx < 5/(2a-3) .
не имеет решения , если  5/(2a-3) ≤ -1⇔5/(2a-3)+1 ≤ 0 ⇔(a+1)/(a-1,5)  ≤ 0.
a∈ [-1 ;1,5) .

б) 2a-3 =0 неравенство не имеет решения.
a =1,5.

в)  { 2a -3 > 0 ;cosx > 5/(2a-3)..⇔{ a > 1,5 ;cosx > 5/(2a-3) .
не имеет решения , если  5/(2a-3) ≥1⇔5/(2a-3)-1 ≥ 0 ⇔(a-4)/(a-1,5)  ≤ 0.
a∈ (1,5 ; .4].

a ∈  [-1 ;1,5) U {1,5}  U (1,5 ; .4] = [ -1 ;4 ].

ответ: a ∈  [ -1 ;4 ].
4,5(60 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ