Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
1).Найдем координату У вершины этой параболы. Сначала вычислим координату Х вершины: Xв.= -b/2a=-10/-2=5 Y(5) = -5^2+10*5+6=31 Yнаиб.=31 ( ветви параболы направлены вниз). 2) По теореме Виета x1*x2=c/a=c/5; x1+x2=-b/a=-4/5 По условию x1-x2=24 x1=x2+24 Подставим (x2+24) в одну из формул Виета: (x2+24)+x2=-4/5 2X2+24=-4/5 2x2=-4/5-24 2x2=-24,8 x2=-12,4 Найдем теперь X1: X1+X2=-4/5 x1-12,4=-4/5 x1=11,6 Теперь найдем значение "c": x1*x2=c/5 11,6*(-12,4)=c/5 -143,84=c/5 c=-719,2 3). 1-2y+y^2>0 Разложим на множители это неравенство: y^2-2y+1=0 (y-1)^2=0 (y-1)(y-1)>0 (- бесконечность;1)U (1;+ бесконечность)
2a2+3a-2аb-3b = (a-b)(2a+3) ,
но это не при условии не -2в , а при условии ,что -2ав