Аквариум наполняется водой, поступающей в него через две трубки, за три часа. за сколько часов может наполнить аквариум первая трубка, если ей требуется для этого на 2,5 часа мениьше второй.
Для решения этого уравнения используем метод замены — заменим одну из частей уравнения на временную переменную.
В данном случае удобнее всего будет заменить (x - 2)² t = (x - 2)²
Также не следует забывать, что квадрат числа не может принимать отрицательные значения, поэтому на t будет наложено ограничение t ≥ 0
Получим новое уравнение уже с другой переменной t² + t - 6 = 0
Решим это квадратное уравнение удобным для нас В данном случае удобнее всего решать с теоремы Виета, но можно и с дискриминанта. Получим корни t₁ = -3 t₂ = 2
Теперь вернемся к замене. t ≥ 0, значит корень -3 не удовлетворяет условию. Корень 2 подходит, поэтому подставим вместо t выражения для замены (x - 2)² = 2
Извлечем квадратный корень из обеих частей уравнения, при этом получим уже совокупность уравнений x - 2 = ±√2
[ x - 2 = √2 [ x - 2 = -√2
[ x = 2 + √2 [ x = 2 - √2
Это и есть решения уравнения ответ: 2 + √2; 2 - √2
Х- скорость пешехода из А у- Скорость пешехода из В , из условия задачи имеем : (х + у ) -столько проходят оба пешехода за 1 час 27/(х+ у) = 3 27 = 3(х+ у) 9 = х + у х = 9 - у 27/у - 27/х = 1 21/60 27/у - 27/х = 81/60 1/у - 1/х =3/60 1/у -1/х = 1/20 , умножим на 20ху , получим 20х -20у = ху , полученное значение х из первого уравнения подставим во второе уравнение : 20(9 - у) -20у = (9 - у) * у 180 -20у -20у = 9у - у^2 y^2 -49y +180 =0 , найдем дискриминант уравнения = 49*49 - 4*1*180 = 2401- 720 = 1681 .Найдем корень квадратный из дискриминанта . Он равен =41 . Найдем корни уравнения : 1-ый = (-(-49)+41)/2*1 = 90/2 = 45 2-ой = (-(-49)-41) /2*1 = 8/2= 4 . Первый корень не подходит : слишком большая скорость для пешехода . Значит скорость пешехода из В ровна = 4км/ч .Из первого уравнения найдем скорость пешехода из А,она равна= х= 9 -у = 9-4 = 5 км/ч
пусть х - скорость первой трубки
тогда у - скорость второй трубки
составляем систему и решаем
ответ: 5ч.