
 
                                                 
                                                 и
 и  – среднеарифметическое равно
 – среднеарифметическое равно      и при этом
     и при этом  на
 на  меньше двадцати пяти и на
 меньше двадцати пяти и на  больше семнадцати.
 больше семнадцати. монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
 монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на  монет меньше изначального, а у Пети на
 монет меньше изначального, а у Пети на  монет больше изначального. А значит, вначале у Васи было на
 монет больше изначального. А значит, вначале у Васи было на  монет больше, чем у Пети.
 монет больше, чем у Пети. монет. Тогда у Пети
 монет. Тогда у Пети  монет.
 монет.
 монет, а у Пети-II будет
 монет, а у Пети-II будет  монет. При этом у Пети-II монет в
 монет. При этом у Пети-II монет в  раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
 раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в  раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
 раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



 было целым, целой должен быть и результат деления в дроби, а чтобы
 было целым, целой должен быть и результат деления в дроби, а чтобы  было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
 было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда      откуда:
     откуда:




 было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
 было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет  откуда:
 откуда:
 
                                                
Первая шахта: 60 рабочих; 5 рабочих часов в день;
2 кг алюминия или 3 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день: 60*5 = 300 часов.
1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля.
Для 3 кг сплава требуется
1/3 часа на добычу 1 кг никеля и
1 час на добычу 2 кг алюминия.
1 час + 1/3 часа =
Пропорция
300 часов - Х кг сплава
------------------------------------------
Вторая шахта: 260 рабочих, 5 рабочих часов в день,
3 кг алюминия или 2 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день: 260*5 = 1300 часов.
1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля.
1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия.
Для 3 кг сплава требуется
1/2 часа для добычи 1 кг никеля и
1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия.
1/2 часа + 2/3 часа =
Пропорция
1300 часов - Х кг сплава
Обе шахты могут обеспечить завод металлом для получения
ответ: